Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639862

RESUMEN

Fibromyalgia (FM) is a painful chronic condition that significantly impacts the quality of life, posing challenges for clinical management. Given the difficulty of understanding the pathophysiology and finding new therapeutics, this study explored the effects of a medicinal plant, E. brasiliensis, in an FM model induced by reserpine in Swiss mice. Animals were treated with saline 0.9% (vehicle), duloxetine 10 mg/kg (positive control), or hydroalcoholic extract of E. brasiliensis leaves 300 mg/kg (HEEb). Nociceptive parameters, as well as locomotion, motor coordination, strength, anxiety, and depressive-like behaviors, were evaluated for 10 days. After that, the brain and blood were collected for further analysis of cytokines (interleukin 1? and interleukin 6), brain-derived neurotrophic factor (BDNF), and the immunocontents of total and phosphorylated Tropomyosin receptor kinase B (TrkB). The results demonstrated that the acute and prolonged treatment with HEEb was able to reduce both mechanical and thermal nociception. It was also possible to observe an increase in the strength, without changing locomotion and motor coordination parameters. Interestingly, treatment with HEEb reduces anxious and depressive-like behaviors. Finally, we observed a reduction in inflammatory cytokines in the hippocampus of animals treated with HEEb, while an increase in BDNF was observed in the prefrontal cortex (PFC). However, no alterations related to total and phosphorylated TrkB receptor expression were found. Our study demonstrated the antinociceptive and emotional effects of HEEb in mice, possibly acting on neuroinflammatory and neurotrophic mechanisms. These data provide initial evidence about the E. brasiliensis potential for treating chronic pain.

2.
Brain Res ; 1749: 147145, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33035499

RESUMEN

Degeneration of striatal neurons and cortical atrophy are pathological characteristics of glutaric acidemia type I (GA-I), a disease characterized by accumulation of glutaric acid (GA). The mechanisms that lead to neuronal loss and cognitive impairment are still unclear. The purpose of this study was to verify if acute exposure to GA during the neonatal period is sufficient to trigger apoptotic processes and lead to learning delay in early and late period. Besides, whether N-acetylcysteine (NAC) would protect against impairment induced by GA. Pups mice received a dose of GA (2.5 µmol/ g) or saline, 12 hs after birth, and were treated with NAC (250 mg/kg) or saline, up to 21th day of life. Although GA exhibited deficits in the procedural and working memories in 21 and 40-day-old mice, NAC protected against cognitive impairment. In striatum and cortex, NAC prevented glial cells activation (GFAP and Iba-1), decreased NGF, Bcl-2 and NeuN, the increase of lipid peroxidation and PARP induced by GA in both ages. NAC protected against increased p75NTR induced by GA, but not in cortex of 21-day-old mice. Thus, we showed that the integrity of striatal and cortical pathways has an important role for learning and suggested that sustained glial reactivity in neonatal period can be an initial trigger for delay of cognitive development. Furthermore, NAC protected against cognitive impairment induced by GA. This work shows that early identification of the alterations induced by GA is important to avoid future clinical complications and suggest that NAC could be an adjuvant treatment for this acidemia.


Asunto(s)
Acetilcisteína/farmacología , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Glutaratos/farmacología , Aprendizaje por Laberinto/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Apoptosis/efectos de los fármacos , Corteza Cerebral/metabolismo , Cognición/efectos de los fármacos , Cuerpo Estriado/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA