Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Neurophysiol ; 124(1): 70-82, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22771035

RESUMEN

OBJECTIVE: To evaluate the test-retest reliability of event-related power changes in the 30-150 Hz gamma frequency range occurring in the first 150 ms after presentation of an auditory stimulus. METHODS: Repeat intracranial electrocorticographic (ECoG) recordings were performed with 12 epilepsy patients, at ≥1-day intervals, using a passive odd-ball paradigm with steady-state tones. Time-frequency matching pursuit analysis was used to quantify changes in gamma-band power relative to pre-stimulus baseline. Test-retest reliability was estimated based on within-subject comparisons (paired t-test, McNemar's test) and correlations (Spearman rank correlations, intra-class correlations) across sessions, adjusting for within-session variability. Reliability estimates of gamma-band response robustness, spatial concordance, and reproducibility were compared with corresponding measurements from concurrent auditory evoked N1 responses. RESULTS: All patients showed increases in gamma-band power, 50-120 ms post-stimulus onset, that were highly robust across recordings, comparable to the evoked N1 responses. Gamma-band responses occurred regardless of patients' performance on behavioral tests of auditory processing, medication changes, seizure focus, or duration of test-retest interval. Test-retest reproducibility was greatest for the timing of peak power changes in the high-gamma range (65-150 Hz). Reliability of low-gamma responses and evoked N1 responses improved at higher signal-to-noise levels. CONCLUSIONS: Early cortical auditory gamma-band responses are robust, spatially concordant, and reproducible over time. SIGNIFICANCE: These test-retest ECoG results confirm the reliability of auditory gamma-band responses, supporting their utility as objective measures of cortical processing in clinical and research studies.


Asunto(s)
Estimulación Acústica , Corteza Auditiva/fisiología , Electroencefalografía , Adolescente , Adulto , Edad de Inicio , Craneotomía , Electrodos Implantados , Potenciales Evocados Auditivos/fisiología , Femenino , Lateralidad Funcional/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Convulsiones/fisiopatología , Percepción del Habla/fisiología , Adulto Joven
2.
Biol Cybern ; 97(2): 173-94, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17619199

RESUMEN

A large scale neural network simulation with realistic cortical architecture has been undertaken to investigate the effects of external electrical stimulation on the propagation and evolution of ongoing seizure activity. This is an effort to explore the parameter space of stimulation variables to uncover promising avenues of research for this therapeutic modality. The model consists of an approximately 800 mum x 800 mum region of simulated cortex, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. The cell dynamics are governed by a modified version of the Hodgkin-Huxley equations in single compartment format. Axonal connections are patterned after histological data and published models of local cortical wiring. Stimulation induced action potentials take place at the axon initial segments, according to threshold requirements on the applied electric field distribution. Stimulation induced action potentials in horizontal axonal branches are also separately simulated. The calculations are performed on a 16 node distributed 32-bit processor system. Clear differences in seizure evolution are presented for stimulated versus the undisturbed rhythmic activity. Data is provided for frequency dependent stimulation effects demonstrating a plateau effect of stimulation efficacy as the applied frequency is increased from 60 to 200 Hz. Timing of the stimulation with respect to the underlying rhythmic activity demonstrates a phase dependent sensitivity. Electrode height and position effects are also presented. Using a dipole stimulation electrode arrangement, clear orientation effects of the dipole with respect to the model connectivity is also demonstrated. A sensitivity analysis of these results as a function of the stimulation threshold is also provided.


Asunto(s)
Corteza Cerebral/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Epilepsia/fisiopatología , Epilepsia/terapia , Red Nerviosa/fisiopatología , Redes Neurales de la Computación , Potenciales de Acción/fisiología , Animales , Forma de la Célula/fisiología , Simulación por Computador , Dendritas/fisiología , Terapia por Estimulación Eléctrica/instrumentación , Terapia por Estimulación Eléctrica/normas , Electrodos/normas , Electrónica Médica/instrumentación , Electrónica Médica/métodos , Electrónica Médica/normas , Epilepsia/prevención & control , Potenciales Evocados/fisiología , Humanos , Interneuronas/fisiología , Vías Nerviosas/fisiopatología , Neuronas/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA