Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 8883, 2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29891985

RESUMEN

High throughput screening (HTS) programs have demonstrated that the Vitamin D receptor (VDR) is activated and/or antagonized by a wide range of structurally diverse chemicals. In this study, we examined the Tox21 qHTS data set generated against VDR for reproducibility and concordance and elucidated functional insights into VDR-xenobiotic interactions. Twenty-one potential VDR agonists and 19 VDR antagonists were identified from a subset of >400 compounds with putative VDR activity and examined for VDR functionality utilizing select orthogonal assays. Transient transactivation assay (TT) using a human VDR plasmid and Cyp24 luciferase reporter construct revealed 20/21 active VDR agonists and 18/19 active VDR antagonists. Mammalian-2-hybrid assay (M2H) was then used to evaluate VDR interactions with co-activators and co-regulators. With the exception of a select few compounds, VDR agonists exhibited significant recruitment of co-regulators and co-activators whereas antagonists exhibited considerable attenuation of recruitment by VDR. A unique set of compounds exhibiting synergistic activity in antagonist mode and no activity in agonist mode was identified. Cheminformatics modeling of VDR-ligand interactions were conducted and revealed selective ligand VDR interaction. Overall, data emphasizes the molecular complexity of ligand-mediated interactions with VDR and suggest that VDR transactivation may be a target site of action for diverse xenobiotics.


Asunto(s)
Evaluación Preclínica de Medicamentos , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/antagonistas & inhibidores , Xenobióticos/metabolismo , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Humanos , Luciferasas/análisis , Luciferasas/genética , Unión Proteica , Técnicas del Sistema de Dos Híbridos
2.
Photomed Laser Surg ; 24(3): 410-3, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16875452

RESUMEN

OBJECTIVE: We assessed the effect of 670-nm light therapy on growth and hatching kinetics in chickens (Gallus gallus) exposed to dioxin. BACKGROUND DATA: Photobiomodulation has been shown to stimulate signaling pathways resulting in improved energy metabolism, antioxidant production, and cell survival. In ovo treatment with 670-nm light-emitting diode (LED) arrays improves hatching success and increases hatchling size in control chickens. Under conditions where developmental dioxin exposure is above the lethality threshold (100 ppt), phototherapy attenuates dioxin-induced early embryonic death. We hypothesized that 670-nm LED therapy would attenuate dioxin-induced developmental anomalies and increase hatching success. METHODS: Fertile chicken eggs were injected with control oil, 2, 20, or 200 ppt dioxin, or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prior to the start of incubation. Half of the eggs in each dose group were treated once per day from embryonic days 0-20 with 670-nm LED light at a fluence of 4 J/cm2. Hatchling size, organ weights, and energy parameters were compared between dose groups and LED treatment. RESULTS: LED therapy resulted in earlier pip times (small hole created 12-24 h prior to hatch), and increased hatchling size and weight in the 200 ppt dose groups. However, there appears to be an LED-oil interaction within the oil-treated controls that results in longer hatch times and decreased liver weight within the LED control dose groups in comparison to the non-LED control dose groups. CONCLUSION: Size and hatching times suggest that the hatching success and preparedness of chicks developmentally exposed to dioxin concentrations above the lethality threshold is improved by 670-nm LED treatment administered throughout the gestation period, but the relationship may be complicated by an LED-oil interaction.


Asunto(s)
Embrión de Pollo/embriología , Dioxinas/toxicidad , Fototerapia , Animales , Pollos/crecimiento & desarrollo , Hígado/embriología , Tamaño de los Órganos
3.
Photomed Laser Surg ; 24(1): 29-32, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16503785

RESUMEN

OBJECTIVE: We assessed the effect of 670-nm light therapy on dioxin-induced embryonic mortality in chickens (Gallus gallus). BACKGROUND DATA: Developmental photobiomodulation using 670-nm light-emitting diode (LED) arrays improves hatching success and increases body size in hatchling chickens. Photobiomodulation also stimulates signaling pathways resulting in improved energy metabolism, antioxidant production and cell survival. Dioxin causes embryonic mortality, including increases in the frequency of chicken embryos that pip but can't go to hatch. We hypothesized that 670-nm LED therapy would attenuate dioxin-induced embryo mortality. METHODS: Fertile chicken eggs were injected with control or 2, 20, or 200 ppt 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin) prior to the start of incubation. Half of the eggs in each dose group were treated once per day from embryonic days 0-20 with 670-nm LED light at a fluence of 4 J/cm(2). In ovo survival and hatching success were compared between dose groups and LED treatment. RESULTS: LED therapy decreased the embryonic mortality rate by 41%, resulting in increased embryonic survival and improved hatching success in eggs exposed to 200 ppt dioxin. However, at sub-lethal dioxin concentrations and in oil-treated controls, LED therapy slightly increased mortality. CONCLUSION: Overall survivorship and hatching success of chicks developmentally exposed to dioxin concentrations above the lethality threshold (>100 ppt TCDD) is improved by 670-nm LED treatment administered throughout the gestation period, but the relationship may be complicated by an LED-oil interaction.


Asunto(s)
Embrión de Pollo/crecimiento & desarrollo , Embrión de Pollo/efectos de la radiación , Fototerapia , Dibenzodioxinas Policloradas/toxicidad , Teratógenos/toxicidad , Animales
4.
Photomed Laser Surg ; 23(3): 268-72, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15954813

RESUMEN

OBJECTIVE: The objective of the present study was to assess the survival and hatching success of chickens (Gallus gallus) exposed in ovo to far-red (670-nm) LED therapy. BACKGROUND DATA: Photobiomodulation by light in the red to near-infrared range (630-1000 nm) using low-energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing and improve recovery from ischemic injury. The mechanism of photobiomodulation at the cellular level has been ascribed to the activation of mitochondrial respiratory chain components resulting in initiation of a signaling cascade that promotes cellular proliferation and cytoprotecton. MATERIALS AND METHODS: Fertile chicken eggs were treated once per day from embryonic days 0-20 with 670-nm LED light at a fluence of 4 J/cm2. In ovo survival and death were monitored by daily candling (after Day 4). RESULTS: We observed a substantial decrease in overall and third-week mortality rates in the light-treated chickens. Overall, there was approximately a 41.5% decrease in mortality rate in the light-treated chickens (NL: 20%; L: 11.8%). During the third week of development, there was a 68.8% decrease in the mortality rate in light-treated chickens (NL: 20%; L: 6.25%). In addition, body weight, crown-rump length, and liver weight increased as a result of the 670-nm phototherapy. Light-treated chickens pipped (broke shell) earlier and had a shorter duration between pip and hatch. CONCLUSION: These results indicate that 670-nm phototherapy by itself does not adversely affect developing embryos and may improve the hatching survival rate.


Asunto(s)
Embrión de Pollo/efectos de la radiación , Luz , Organogénesis/efectos de la radiación , Animales , Peso Corporal , Largo Cráneo-Cadera , Fototerapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA