Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370667

RESUMEN

The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,ß-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,ß-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.

2.
Sci Rep ; 11(1): 17788, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493738

RESUMEN

Bile acid profiles are altered in obese individuals with asthma. Thus, we sought to better understand how obesity-related systemic changes contribute to lung pathophysiology. We also test the therapeutic potential of nitro-oleic acid (NO2-OA), a regulator of metabolic and inflammatory signaling pathways, to mitigate allergen and obesity-induced lung function decline in a murine model of asthma. Bile acids were measured in the plasma of healthy subjects and individuals with asthma and serum and lung tissue of mice with and without allergic airway disease (AAD). Lung function, indices of inflammation and hepatic bile acid enzyme expression were measured in obese mice with house dust mite-induced AAD treated with vehicle or NO2-OA. Serum levels of glycocholic acid and glycoursodeoxycholic acid clinically correlate with body mass index and airway hyperreactivity whereas murine levels of ß-muricholic acid and tauro-ß-muricholic acid were significantly increased and positively correlated with impaired lung function in obese mice with AAD. NO2-OA reduced murine bile acid levels by modulating hepatic expression of bile acid synthesis enzymes, with a concomitant reduction in small airway resistance and tissue elastance. Bile acids correlate to body mass index and lung function decline and the signaling actions of nitroalkenes can limit AAD by modulating bile acid metabolism, revealing a potential pharmacologic approach to improving the current standard of care.


Asunto(s)
Asma/metabolismo , Asma/fisiopatología , Ácidos y Sales Biliares/metabolismo , Ácidos Grasos/fisiología , Pulmón/fisiopatología , Nitrocompuestos/uso terapéutico , Obesidad/metabolismo , Ácidos Oléicos/uso terapéutico , Adolescente , Adulto , Animales , Antiasmáticos/uso terapéutico , Antígenos Dermatofagoides/toxicidad , Asma/tratamiento farmacológico , Asma/etiología , Dieta Alta en Grasa/efectos adversos , Evaluación Preclínica de Medicamentos , Ácidos Grasos/química , Femenino , Volumen Espiratorio Forzado , Ácido Glicocólico/sangre , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/fisiopatología , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/tratamiento farmacológico , Hipersensibilidad Respiratoria/metabolismo , Delgadez , Ácido Ursodesoxicólico/análogos & derivados , Ácido Ursodesoxicólico/sangre , Capacidad Vital , Adulto Joven
3.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-34445757

RESUMEN

Nitro-oleic acid (NO2-OA), a nitric oxide (NO)- and nitrite (NO2-)-derived electrophilic fatty acid metabolite, displays anti-inflammatory and anti-fibrotic signaling actions and therapeutic benefit in murine models of ischemia-reperfusion, atrial fibrillation, and pulmonary hypertension. Muscle LIM protein-deficient mice (Mlp-/-) develop dilated cardiomyopathy (DCM), characterized by impaired left ventricular function and increased ventricular fibrosis at the age of 8 weeks. This study investigated the effects of NO2-OA on cardiac function in Mlp-/- mice both in vivo and in vitro. Mlp-/- mice were treated with NO2-OA or vehicle for 4 weeks via subcutaneous osmotic minipumps. Wildtype (WT) littermates treated with vehicle served as controls. Mlp-/- mice exhibited enhanced TGFß signalling, fibrosis and severely reduced left ventricular systolic function. NO2-OA treatment attenuated interstitial myocardial fibrosis and substantially improved left ventricular systolic function in Mlp-/- mice. In vitro studies of TGFß-stimulated primary cardiac fibroblasts further revealed that the anti-fibrotic effects of NO2-OA rely on its capability to attenuate fibroblast to myofibroblast transdifferentiation by inhibiting phosphorylation of TGFß downstream targets. In conclusion, we demonstrate a substantial therapeutic benefit of NO2-OA in a murine model of DCM, mediated by interfering with endogenously activated TGFß signaling.


Asunto(s)
Antiinflamatorios/uso terapéutico , Cardiomiopatía Dilatada/tratamiento farmacológico , Nitrocompuestos/uso terapéutico , Ácidos Oléicos/uso terapéutico , Función Ventricular Izquierda/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Evaluación Preclínica de Medicamentos , Fibroblastos/metabolismo , Fibrosis , Corazón/efectos de los fármacos , Proteínas con Dominio LIM/genética , Ratones , Proteínas Musculares/genética , Miocardio/metabolismo , Nitrocompuestos/farmacología , Ácidos Oléicos/farmacología , Factor de Crecimiento Transformador beta/metabolismo
4.
Sci Rep ; 10(1): 15319, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948795

RESUMEN

Nitro-fatty acids are electrophilic anti-inflammatory mediators which are generated during myocardial ischemic injury. Whether these species exert anti-arrhythmic effects in the acute phase of myocardial ischemia has not been investigated so far. Herein, we demonstrate that pretreatment of mice with 9- and 10-nitro-octadec-9-enoic acid (nitro-oleic acid, NO2-OA) significantly reduced the susceptibility to develop acute ventricular tachycardia (VT). Accordingly, epicardial mapping revealed a markedly enhanced homogeneity in ventricular conduction. NO2-OA treatment of isolated cardiomyocytes lowered the number of spontaneous contractions upon adrenergic isoproterenol stimulation and nearly abolished ryanodine receptor type 2 (RyR2)-dependent sarcoplasmic Ca2+ leak. NO2-OA also significantly reduced RyR2-phosphorylation by inhibition of increased CaMKII activity. Thus, NO2-OA might be a novel pharmacological option for the prevention of VT development.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Nitrocompuestos/farmacología , Ácidos Oléicos/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Catecolaminas/farmacología , Suplementos Dietéticos , Homeostasis/efectos de los fármacos , Isoproterenol/farmacología , Masculino , Ratones Endogámicos , Isquemia Miocárdica/complicaciones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/etiología , Taquicardia Ventricular/prevención & control
5.
Nitric Oxide ; 79: 31-37, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29944935

RESUMEN

Nitrated oleic acid (NO2-OA) was first identified in 2003, and after the characterization of its formation and thiol reactivity, it was used as a prototypical molecule to investigate the physiological actions of endogenous nitrated fatty acids (NO2-FA). Based on in vitro observations showing significant activation of cytoprotective and anti-inflammatory signaling responses by NO2-FA, experiments were designed to determine their pharmacological potential. Supported by strong intellectual protection and favorable pharmacokinetic and pharmacodynamic data, 10-NO2-OA (CXA-10) underwent pharmaceutical development as a drug to treat fibrotic and inflammatory diseases. NO2-FA are at the intersection of three unconventional drug candidate classes that include 1) fatty acids, 2) metabolic intermediates and 3) electrophilic molecules. These three groups use different scaffolds for drug development, are characterized by broad activities and are individually gaining traction as alternatives to mono-target drug therapies. In particular, NO2-FA share key characteristics with currently approved pharmacological agents regarding reactivity, distribution, and mechanism of action. This review first presents the characteristics, liabilities, and opportunities that these different drug candidate classes display, and then discusses these issues in the context of current progress in the preclinical and clinical development of NO2-FA as drugs. Lessons learned from the novel approaches presented herein were considered early on during development to structurally define and improve NO2-FA and their disease targets.


Asunto(s)
Ácidos Grasos/uso terapéutico , Fibrosis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Nitrocompuestos/uso terapéutico , Animales , Enfermedad Crónica , Humanos
6.
Hypertension ; 70(3): 634-644, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28739973

RESUMEN

Dietary NO3- (nitrate) and NO2- (nitrite) support ˙NO (nitric oxide) generation and downstream vascular signaling responses. These nitrogen oxides also generate secondary nitrosating and nitrating species that react with low molecular weight thiols, heme centers, proteins, and unsaturated fatty acids. To explore the kinetics of NO3-and NO2-metabolism and the impact of dietary lipid on nitrogen oxide metabolism and cardiovascular responses, the stable isotopes Na15NO3 and Na15NO2 were orally administered in the presence or absence of conjugated linoleic acid (cLA). The reduction of 15NO2- to 15NO was indicated by electron paramagnetic resonance spectroscopy detection of hyperfine splitting patterns reflecting 15NO-deoxyhemoglobin complexes. This formation of 15NO also translated to decreased systolic and mean arterial blood pressures and inhibition of platelet function. Upon concurrent administration of cLA, there was a significant increase in plasma cLA nitration products 9- and 12-15NO2-cLA. Coadministration of cLA with 15NO2- also impacted the pharmacokinetics and physiological effects of 15NO2-, with cLA administration suppressing plasma NO3-and NO2-levels, decreasing 15NO-deoxyhemoglobin formation, NO2-inhibition of platelet activation, and the vasodilatory actions of NO2-, while enhancing the formation of 9- and 12-15NO2-cLA. These results indicate that the biochemical reactions and physiological responses to oral 15NO3-and 15NO2-are significantly impacted by dietary constituents, such as unsaturated lipids. This can explain the variable responses to NO3-and NO2-supplementation in clinical trials and reveals dietary strategies for promoting the generation of pleiotropic nitrogen oxide-derived lipid signaling mediators. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT01681836.


Asunto(s)
Plaquetas/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Nitratos/farmacología , Nitritos/farmacología , Administración Oral , Humanos , Ácidos Linoleicos Conjugados/administración & dosificación , Nitratos/administración & dosificación , Nitritos/administración & dosificación
7.
Free Radic Biol Med ; 105: 48-67, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27989792

RESUMEN

Recent insights into the bioactivation and signaling actions of inorganic, dietary nitrate and nitrite now suggest a critical role for the microbiome in the development of cardiac and pulmonary vascular diseases. Once thought to be the inert, end-products of endothelial-derived nitric oxide (NO) heme-oxidation, nitrate and nitrite are now considered major sources of exogenous NO that exhibit enhanced vasoactive signaling activity under conditions of hypoxia and stress. The bioavailability of nitrate and nitrite depend on the enzymatic reduction of nitrate to nitrite by a unique set of bacterial nitrate reductase enzymes possessed by specific bacterial populations in the mammalian mouth and gut. The pathogenesis of pulmonary hypertension (PH), obesity, hypertension and CVD are linked to defects in NO signaling, suggesting a role for commensal oral bacteria to shape the development of PH through the formation of nitrite, NO and other bioactive nitrogen oxides. Oral supplementation with inorganic nitrate or nitrate-containing foods exert pleiotropic, beneficial vascular effects in the setting of inflammation, endothelial dysfunction, ischemia-reperfusion injury and in pre-clinical models of PH, while traditional high-nitrate dietary patterns are associated with beneficial outcomes in hypertension, obesity and CVD. These observations highlight the potential of the microbiome in the development of novel nitrate- and nitrite-based therapeutics for PH, CVD and their risk factors.


Asunto(s)
Enfermedades Cardiovasculares/microbiología , Microbiota , Boca/microbiología , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Ácidos Grasos/metabolismo , Humanos , Circulación Pulmonar , Transducción de Señal
8.
J Lipid Res ; 58(2): 375-385, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27913584

RESUMEN

Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[14C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.


Asunto(s)
Tejido Adiposo/metabolismo , Ácidos Grasos/metabolismo , Ácidos Oléicos/administración & dosificación , Ácidos Oléicos/metabolismo , Tejido Adiposo/química , Alquenos/química , Animales , Radioisótopos de Carbono/química , Cisteína/química , Esterificación , Ácidos Grasos/química , Ratones , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Ácidos Oléicos/química , Procesamiento Proteico-Postraduccional , Ratas , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
9.
Free Radic Biol Med ; 89: 333-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26385079

RESUMEN

A gap in our understanding of the beneficial systemic responses to dietary constituents nitrate (NO3(-)), nitrite (NO2(-)) and conjugated linoleic acid (cLA) is the identification of the downstream metabolites that mediate their actions. To examine these reactions in a clinical context, investigational drug preparations of (15)N-labeled NO3(-) and NO2(-) were orally administered to healthy humans with and without cLA. Mass spectrometry analysis of plasma and urine indicated that the nitrating species nitrogen dioxide was formed and reacted with the olefinic carbons of unsaturated fatty acids to yield the electrophilic fatty acid, nitro-cLA (NO2-cLA). These species mediate the post-translational modification (PTM) of proteins via reversible Michael addition with nucleophilic amino acids. The PTM of critical target proteins by electrophilic lipids has been described as a sensing mechanism that regulates adaptive cellular responses, but little is known about the endogenous generation of fatty acid nitroalkenes and their metabolites. We report that healthy humans consuming (15)N-labeled NO3(-) or NO2(-), with and without cLA supplementation, produce (15)NO2-cLA and corresponding metabolites that are detected in plasma and urine. These data support that the dietary constituents NO3(-), NO2(-) and cLA promote the further generation of secondary electrophilic lipid products that are absorbed into the circulation at concentrations sufficient to exert systemic effects before being catabolized or excreted.


Asunto(s)
Alquenos/metabolismo , Antiinflamatorios/metabolismo , Ácido Linoleico/metabolismo , Nitratos/administración & dosificación , Nitritos/administración & dosificación , Nitrocompuestos/metabolismo , Adulto , Cromatografía Liquida , Suplementos Dietéticos , Femenino , Humanos , Masculino , Nitratos/metabolismo , Nitritos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Free Radic Biol Med ; 87: 113-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26066303

RESUMEN

Electrophilic fatty acid nitroalkenes (NO(2)-FA) are products of nitric oxide and nitrite-mediated unsaturated fatty acid nitration. These electrophilic products induce pleiotropic signaling actions that modulate metabolic and inflammatory responses in cell and animal models. The metabolism of NO(2)-FA includes reduction of the vinyl nitro moiety by prostaglandin reductase-1, mitochondrial ß-oxidation, and Michael addition with low molecular weight nucleophilic amino acids. Complex lipid reactions of fatty acid nitroalkenes are not well defined. Herein we report the detection and characterization of NO(2)-FA-containing triacylglycerides (NO(2)-FA-TAG) via mass spectrometry-based methods. In this regard, unsaturated fatty acids of dietary triacylglycerides are targets for nitration reactions during gastric acidification, where NO(2)-FA-TAG can be detected in rat plasma after oral administration of nitro-oleic acid (NO(2)-OA). Furthermore, the characterization and profiling of these species, including the generation of beta oxidation and dehydrogenation products, could be detected in NO(2)-OA-supplemented adipocytes. These data revealed that NO(2)-FA-TAG, formed by either the direct nitration of esterified unsaturated fatty acids or the incorporation of nitrated free fatty acids into triacylglycerides, contribute to the systemic distribution of these reactive electrophilic mediators and may serve as a depot for subsequent mobilization by lipases to in turn impact adipocyte homeostasis and tissue signaling events.


Asunto(s)
Alquenos/metabolismo , Esterificación , Ácidos Grasos/metabolismo , Óxido Nítrico/metabolismo , Triglicéridos/metabolismo , Animales , Masculino , Mitocondrias/metabolismo , Nitrocompuestos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ratas , Transducción de Señal
11.
PLoS One ; 9(4): e94836, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24736647

RESUMEN

UNLABELLED: Dietary ω-3 polyunsaturated fatty acids (PUFAs) decrease cardiovascular risk via suppression of inflammation. The generation of electrophilic α,ß-unsaturated ketone derivatives of the ω-3 PUFAs docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) in activated human macrophages is catalyzed by cyclooxygenase-2 (Cox-2). These derivatives are potent pleiotropic anti-inflammatory signaling mediators that act via mechanisms including the activation of Nrf2-dependent phase 2 gene expression and suppression of pro-inflammatory NF-κB-driven gene expression. Herein, the endogenous generation of ω-3 PUFAs electrophilic ketone derivatives and their hydroxy precursors was evaluated in human neutrophils. In addition, their dietary modulation was assessed through a randomized clinical trial. METHODS: Endogenous generation of electrophilic omega-3 PUFAs and their hydroxy precursors was evaluated by mass spectrometry in neutrophils isolated from healthy subjects, both at baseline and upon stimulation with calcium ionophore. For the clinical trial, participants were healthy adults 30-55 years of age with a reported EPA+DHA consumption of ≤300 mg/day randomly assigned to parallel groups receiving daily oil capsule supplements for a period of 4 months containing either 1.4 g of EPA+DHA (active condition, n = 24) or identical appearing soybean oil (control condition, n = 21). Participants and laboratory technicians remained blinded to treatment assignments. RESULTS: 5-lypoxygenase-dependent endogenous generation of 7-oxo-DHA, 7-oxo-DPA and 5-oxo-EPA and their hydroxy precursors is reported in human neutrophils stimulated with calcium ionophore and phorbol 12-myristate 13-acetate (PMA). Dietary EPA+DHA supplementation significantly increased the formation of 7-oxo-DHA and 5-oxo-EPA, with no significant modulation of arachidonic acid (AA) metabolite levels. CONCLUSIONS: The endogenous detection of these electrophilic ω-3 fatty acid ketone derivatives supports the precept that the benefit of ω-3 PUFA-rich diets can be attributed to the generation of electrophilic oxygenated metabolites that transduce anti-inflammatory actions rather than the suppression of pro-inflammatory AA metabolites. TRIAL REGISTRATION: ClinicalTrials.gov NCT00663871.


Asunto(s)
Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Dieta , Ácidos Grasos Omega-3/biosíntesis , Ácidos Grasos Omega-3/farmacología , Adulto , Antiinflamatorios/química , Araquidonato 5-Lipooxigenasa/metabolismo , Relación Dosis-Respuesta a Droga , Ácidos Grasos Omega-3/química , Femenino , Humanos , Cetonas/química , Masculino , Persona de Mediana Edad , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo
12.
PLoS One ; 9(1): e84884, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454759

RESUMEN

Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2 (-))-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry. The electrophilic nature of these species was affirmed by the detection of significant levels of protein cysteine adducts of nitro-oleic acid (NO2-OA-cysteine) in fresh olives, especially in the peel. Further nitration of EVOO by NO2 (-) under acidic gastric digestive conditions revealed that human consumption of olive lipids will produce additional nitro-conjugated linoleic acid (NO2-cLA) and nitro-oleic acid (NO2-OA). The presence of free and protein-adducted NO2-FA in both mammalian and plant lipids further affirm a role for these species as signaling mediators. Since NO2-FA instigate adaptive anti-inflammatory gene expression and metabolic responses, these redox-derived metabolites may contribute to the cardiovascular benefits associated with the Mediterranean diet.


Asunto(s)
Alquenos/química , Electrones , Ácidos Grasos/análisis , Ácidos Grasos/química , Nitrocompuestos/química , Olea/química , Aceites de Plantas/química , Antiinflamatorios/análisis , Antiinflamatorios/química , Biomimética , Grasas de la Dieta/análisis , Digestión , Concentración de Iones de Hidrógeno , Aceite de Oliva , Proteínas de Plantas/química , Estómago/química , Estómago/fisiología
13.
J Biol Chem ; 287(53): 44071-82, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23144452

RESUMEN

The oxidation and nitration of unsaturated fatty acids by oxides of nitrogen yield electrophilic derivatives that can modulate protein function via post-translational protein modifications. The biological mechanisms accounting for fatty acid nitration and the specific structural characteristics of products remain to be defined. Herein, conjugated linoleic acid (CLA) is identified as the primary endogenous substrate for fatty acid nitration in vitro and in vivo, yielding up to 10(5) greater extent of nitration products as compared with bis-allylic linoleic acid. Multiple enzymatic and cellular mechanisms account for CLA nitration, including reactions catalyzed by mitochondria, activated macrophages, and gastric acidification. Nitroalkene derivatives of CLA and their metabolites are detected in the plasma of healthy humans and are increased in tissues undergoing episodes of ischemia reperfusion. Dietary CLA and nitrite supplementation in rodents elevates NO(2)-CLA levels in plasma, urine, and tissues, which in turn induces heme oxygenase-1 (HO-1) expression in the colonic epithelium. These results affirm that metabolic and inflammatory reactions yield electrophilic products that can modulate adaptive cell signaling mechanisms.


Asunto(s)
Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Transducción de Señal
14.
Nat Chem Biol ; 5(12): 865-9, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19915529

RESUMEN

Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent 2-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm.


Asunto(s)
Nitratos/metabolismo , Nitratos/uso terapéutico , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Nitritos/uso terapéutico , Animales , Dieta , Metabolismo Energético , Humanos , Mitocondrias/metabolismo , Nitratos/administración & dosificación , Nitritos/administración & dosificación , Transducción de Señal
15.
FEBS Lett ; 561(1-3): 94-8, 2004 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-15013757

RESUMEN

Xanthine oxidase (XO)-derived superoxide contributes to endothelial dysfunction in humans and animal models of hypercholesterolemia (HC). Since L-arginine supplementation prevents defects in NO signaling, we tested the hypothesis that L-arginine blunts the inhibitory effect of XO on vascular function. Acetylcholine-mediated relaxation was significantly impaired in ring segments of HC rabbits, a response that was associated with an increase in plasma XO activity. L-Arginine treatment of HC rabbits reduced plasma XO and improved endothelial function. L-Arginine also modestly prolonged the lag time for oxidation in isolated lipoprotein samples. These results reveal that the principal action of L-arginine is to protect against the XO-dependent inactivation of NO in arteries of HC rabbits.


Asunto(s)
Arginina/farmacología , Endotelio Vascular/efectos de los fármacos , Hipercolesterolemia/fisiopatología , Xantina Oxidasa/efectos de los fármacos , Acetilcolina/farmacología , Animales , Aorta/fisiología , Arginina/administración & dosificación , Relación Dosis-Respuesta a Droga , Endotelio Vascular/fisiopatología , Hipercolesterolemia/tratamiento farmacológico , Óxido Nítrico/metabolismo , Conejos , Vasodilatación/efectos de los fármacos , Xantina Oxidasa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA