Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 81(9): 3132-41, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25724953

RESUMEN

Iron is essential in many biological processes. However, its bioavailability is reduced in aerobic environments, such as soil. To overcome this limitation, microorganisms have developed different strategies, such as iron chelation by siderophores. Some bacteria have even gained the ability to detect and utilize xenosiderophores, i.e., siderophores produced by other organisms. We illustrate an example of such an interaction between two soil bacteria, Pseudomonas fluorescens strain BBc6R8 and Streptomyces ambofaciens ATCC 23877, which produce the siderophores pyoverdine and enantiopyochelin and the siderophores desferrioxamines B and E and coelichelin, respectively. During pairwise cultures on iron-limiting agar medium, no induction of siderophore synthesis by P. fluorescens BBc6R8 was observed in the presence of S. ambofaciens ATCC 23877. Cocultures with a Streptomyces mutant strain that produced either coelichelin or desferrioxamines, as well as culture in a medium supplemented with desferrioxamine B, resulted in the absence of pyoverdine production; however, culture with a double mutant deficient in desferrioxamines and coelichelin production did not. This strongly suggests that P. fluorescens BBbc6R8 utilizes the ferrioxamines and ferricoelichelin produced by S. ambofaciens as xenosiderophores and therefore no longer activates the production of its own siderophores. A screening of a library of P. fluorescens BBc6R8 mutants highlighted the involvement of the TonB-dependent receptor FoxA in this process: the expression of foxA and genes involved in the regulation of its biosynthesis was induced in the presence of S. ambofaciens. In a competitive environment, such as soil, siderophore piracy could well be one of the driving forces that determine the outcome of microbial competition.


Asunto(s)
Deferoxamina/metabolismo , Compuestos Férricos/metabolismo , Interacciones Microbianas , Oligopéptidos/metabolismo , Pseudomonas fluorescens/metabolismo , Sideróforos/metabolismo , Streptomyces/metabolismo , Medios de Cultivo/química , Pseudomonas fluorescens/crecimiento & desarrollo , Streptomyces/crecimiento & desarrollo
2.
Microb Ecol ; 54(3): 567-77, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17546519

RESUMEN

The ectomycorrhizal symbiosis alters the physicochemical and biological conditions in the surrounding soil, thus creating a particular environment called ectomycorrhizosphere, which selects microbial communities suspected to play a role in gross production and nutrient cycling. To assess the ectomycorrhizosphere effect on the structure of microbial communities potentially involved in the mobilization of nutrients from the soil minerals in a poor-nutrient environment, we compared the functional diversity of soil and ectomycorrhizosphere bacterial communities in a forest stand. Two hundred and sixty-four bacterial strains and 107 fungal strains were isolated from the bulk soil of an oak (Quercus petraea) stand and from oak-Scleroderma citrinum ectomycorrhizosphere and ectomycorrhizae, in two soil organo-mineral horizons (0 to 3 cm and 5 to 10 cm). They were characterized using two in vitro tests related to their capacities to mobilize iron and phosphorus. We demonstrated that the oak-S. citrinum ectomycorrhizosphere significantly structures the culturable bacterial communities in the two soil horizons by selecting very efficient strains for phosphorus and iron mobilization. This effect was also observed on the diversity of the phosphate-solubilizing fungal communities in the lower soil horizon. A previous study already demonstrated that Laccaria bicolor-Douglas fir ectomycorrhizosphere structures the functional diversity of Pseudomonas fluorescens population in a forest nursery soil. Comparing to it, our work highlights the consistency of the mycorrhizosphere effect on the functional diversity of bacterial and fungal communities in relation to the mineral weathering process, no matter the fungal symbiont, the age and species of the host tree, or the environment (nursery vs forest). We also demonstrated that the intensity of phosphorus and iron mobilization by the ectomycorrhizosphere bacteria isolated from the lower soil horizon was significantly higher compared to that which was isolated from the upper horizon. This reveals for the first time a stratification of the functional diversity of the culturable soil bacterial communities as related to phosphorus and iron mobilization.


Asunto(s)
Bacterias/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Microbiología del Suelo , Árboles/microbiología , Análisis de Varianza , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Hongos/aislamiento & purificación , Hongos/metabolismo , Hierro/metabolismo , Micorrizas , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Quercus/metabolismo , Quercus/microbiología , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA