Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 26(12): 3001-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25855777

RESUMEN

Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation.


Asunto(s)
Oxalato de Calcio/orina , Fosfatos de Calcio/orina , Diuréticos/uso terapéutico , Hipercalciuria/orina , Cálculos Renales/prevención & control , Cálculos Renales/orina , Citrato de Potasio/uso terapéutico , Animales , Calcio/orina , Fosfatos de Calcio/análisis , Calcio de la Dieta/administración & dosificación , Ácido Cítrico/orina , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Cálculos Renales/química , Masculino , Cloruro de Potasio/uso terapéutico , Ratas , Ácido Úrico/orina , Orina/química
2.
Calcif Tissue Int ; 94(5): 531-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24481706

RESUMEN

Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (u) calcium (Ca) excretion, demonstrate increased intestinal Ca absorption, increased bone Ca resorption, and reduced renal Ca reabsorption, all leading to elevated uCa compared to the parental Sprague-Dawley (SD) rats. GHS rats have increased numbers of vitamin D receptors (VDRs) at each site, with normal levels of 1,25(OH)2D3 (1,25D), suggesting their VDR is undersaturated with 1,25D. We have shown that 1,25D induces a greater increase in uCa in GHS than SD rats. To examine the effect of the increased VDR on the osseous response to 1,25D, we fed GHS and SD rats an ample Ca diet and injected either 1,25D [low dose (LD) 12.5 or high dose (HD) 25 ng/100 g body weight/day] or vehicle (veh) daily for 16 days. Femoral areal bone mineral density (aBMD, by DEXA) was decreased in GHS+LD and GHS+HD relative to GHS+veh, while there was no effect on SD. Vertebral aBMD was lower in GHS compared to SD and further decreased in GHS+HD. Both femoral and L6 vertebral volumetric BMD (by µCT) were lower in GHS and further reduced by HD. Histomorphometry indicated a decreased osteoclast number in GHS+HD compared to GHS+veh or SD+HD. In tibiae, GHS+HD trabecular thickness and number increased, with a 12-fold increase in osteoid volume but only a threefold increase in bone volume. Bone formation rate was decreased in GHS+HD relative to GHS+veh, confirming the mineralization defect. The loss of BMD and the mineralization defect in GHS rats contribute to increased hypercalciuria; if these effects persist, they would result in decreased bone strength, making these bones more fracture-prone. The enhanced effect of 1,25D in GHS rats indicates that the increased VDRs are biologically active.


Asunto(s)
Densidad Ósea/fisiología , Calcificación Fisiológica/fisiología , Calcitriol/farmacología , Hipercalciuria/fisiopatología , Animales , Resorción Ósea/fisiopatología , Huesos/efectos de los fármacos , Huesos/fisiopatología , Calcificación Fisiológica/efectos de los fármacos , Calcitriol/metabolismo , Modelos Animales de Enfermedad , Hipercalciuria/metabolismo , Masculino , Ratas , Ratas Mutantes , Ratas Sprague-Dawley , Receptores de Calcitriol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA