Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 274(8): 5185-92, 1999 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-9988768

RESUMEN

The 3-O-sulfation of glucosamine residues is an important modification during the biosynthesis of heparan sulfate (HS). Our previous studies have led us to purify and molecularly clone the heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST-1), which is the key enzyme converting nonanticoagulant heparan sulfate (HSinact) to anticoagulant heparan sulfate (HSact). In this study, we expressed and characterized the full-length cDNAs of 3-OST-1 homologous genes, designated as 3-OST-2, 3-OST-3A, and 3-OST-3B as described in the accompanying paper (Shworak, N. W., Liu, J., Petros, L. M., Zhang, L., Kobayashi, M., Copeland, N. G., Jenkins, N. A., and Rosenberg, R. D. (1999) J. Biol. Chem. 274, 5170-5184). All these cDNAs were successfully expressed in COS-7 cells, and heparan sulfate sulfotransferase activities were found in the cell extracts. We demonstrated that 3-OST-2, 3-OST-3A, and 3-OST-3B are heparan sulfate D-glucosaminyl 3-O-sulfotransferases because the enzymes transfer sulfate from adenosine 3'-phosphophate 5'-phospho-[35S]sulfate ([35S]PAPS) to the 3-OH position of glucosamine. 3-OST-3A and 3-OST-3B sulfate an identical disaccharide. HSact conversion activity in the cell extract transfected by 3-OST-1 was shown to be 300-fold greater than that in the cell extracts transfected by 3-OST-2 and 3-OST-3A, suggesting that 3-OST-2 and 3-OST-3A do not make HSact. The results of the disaccharide analysis of the nitrous acid-degraded [35S]HS suggested that 3-OST-2 transfers sulfate to GlcA2S-GlcNS and IdoA2S-GlcNS; 3-OST-3A transfers sulfate to IdoA2S-GlcNS. Our results demonstrate that the 3-O-sulfation of glucosamine is generated by different isoforms depending on the saccharide structures around the modified glucosamine residue. This discovery has provided evidence for a new cellular mechanism for generating a defined saccharide sequence in structurally complex HS polysaccharide.


Asunto(s)
Isoenzimas/metabolismo , Sulfotransferasas/metabolismo , Animales , Células COS , Cromatografía Líquida de Alta Presión , ADN Complementario , Isoenzimas/química , Isoenzimas/genética , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Sulfatos/metabolismo , Sulfotransferasas/química , Sulfotransferasas/genética , Radioisótopos de Azufre
2.
J Biol Chem ; 272(44): 28008-19, 1997 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-9346953

RESUMEN

The cellular rate of anticoagulant heparan sulfate proteoglycan (HSPGact) generation is determined by the level of a kinetically limiting microsomal activity, HSact conversion activity, which is predominantly composed of the long sought heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST) (Shworak, N. W., Fritze, L. M. S., Liu, J., Butler, L. D., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27063-27071; Liu, J., Shworak, N. W., Fritze, L. M. S., Edelberg, J. M., and Rosenberg, R. D. (1996) J. Biol. Chem. 271, 27072-27082). Mouse 3-OST cDNAs were isolated by proteolyzing the purified enzyme with Lys-C, sequencing the resultant peptides as well as the existing amino terminus, employing degenerate polymerase chain reaction primers corresponding to the sequences of the peptides as well as the amino terminus to amplify a fragment from LTA cDNA, and utilizing the resultant probe to obtain full-length enzyme cDNAs from a lambda Zap Express LTA cDNA library. Human 3-OST cDNAs were isolated by searching the expressed sequence tag data bank with the mouse sequence, identifying a partial-length human cDNA and utilizing the clone as a probe to isolate a full-length enzyme cDNA from a lambda TriplEx human brain cDNA library. The expression of wild-type mouse 3-OST as well as protein A-tagged mouse enzyme by transient transfection of COS-7 cells and the expression of both wild-type mouse and human 3-OST by in vitro transcription/translation demonstrate that the two cDNAs directly encode both HSact conversion and 3-OST activities. The mouse 3-OST cDNAs exhibit three different size classes because of a 5'-untranslated region of variable length, which results from the insertion of 0-1629 base pairs (bp) between residues 216 and 217; however, all cDNAs contain the same open reading frame of 933 bp. The length of the 3'-untranslated region ranges from 301 to 430 bp. The nucleic acid sequence of mouse and human 3-OST cDNAs are approximately 85% similar, encoding novel 311- and 307-amino acid proteins of 35,876 and 35,750 daltons, respectively, that are 93% similar. The encoded enzymes are predicted to be intraluminal Golgi residents, presumably interacting via their C-terminal regions with an integral membrane protein. Both 3-OST species exhibit five potential N-glycosylation sites, which account for the apparent discrepancy between the molecular masses of the encoded enzyme (approximately 34 kDa) and the previously purified enzyme (approximately 46 kDa). The two 3-OST species also exhibit approximately 50% similarity with all previously identified forms of the heparan biosynthetic enzyme N-deacetylase/N-sulfotransferase, which suggests that heparan biosynthetic enzymes share a common sulfotransferase domain.


Asunto(s)
Sulfotransferasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Línea Celular , Clonación Molecular , ADN Complementario , Humanos , Ratones , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido , Sulfotransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA