Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Drug Dev Res ; 82(8): 1169-1181, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33983647

RESUMEN

Urease plays a significant role in the pathogenesis of urolithiasis pyelonephritis, urinary catheter encrustation, hepatic coma, hepatic encephalopathy, and peptic acid duodenal ulcers. Salvinia molesta was explored to identify new bioactive compounds with particular emphasis on urease inhibitors. The aqueous methanol extract was fractionated using solvents of increasing polarity. A series of column chromatography and later HPLC were performed on butanol extract. The structures of the resulting pure compounds were resolved using NMR (1D and 2D), infrared, and mass spectroscopy. The novel isolate was evaluated for antioxidant activity (using DPPH, superoxide anion radical scavenging, oxidative burst, and Fe+2 chelation assays), anti-glycation behavior, anticancer activity, carbonic anhydrase inhibition, phosphodiesterase inhibition, and urease inhibition. One new glucopyranose derivative 6'-O-(3,4-dihydroxybenzoyl)-4'-O-(4-hydroxybenzoyl)-α/ß-D-glucopyranoside (1) and four known glycosides were identified. Glycoside 1 demonstrated promising antioxidant potential with IC50 values of 48.2 ± 0.3, 60.3 ± 0.6, and 42.1 ± 1.8 µM against DPPH, superoxide radical, and oxidative burst, respectively. Its IC50 in the Jack bean urease inhibition assay was 99.1 ± 0.8 µM. The mechanism-based kinetic studies presented that compound 1 is a mixed-type inhibitor of urease with a Ki value of 91.8 ± 0.1 µM. Finally, molecular dynamic simulations exploring the binding mode of compound 1 with urease provided quantitative agreement between estimated binding free energies and the experimental results. The studies corroborate the use of compound 1 as a lead for QSAR studies as an antioxidant and urease inhibitor. Moreover, it needs to be further evaluated through the animal model, that is, in vivo or tissue culture-based ex-vivo studies, to establish their therapeutic potential against oxidative stress phosphodiesterase-II and urease-induced pathologies.


Asunto(s)
Antioxidantes/aislamiento & purificación , Extractos Vegetales/análisis , Tracheophyta/química , Ureasa/antagonistas & inhibidores , Antioxidantes/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Mediciones Luminiscentes , Simulación del Acoplamiento Molecular , Inhibidores de Fosfodiesterasa/aislamiento & purificación , Ureasa/química
2.
Sci Rep ; 11(1): 1708, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462261

RESUMEN

Ifosfamide is a widely used chemotherapeutic agent having broad-spectrum efficacy against several tumors. However, nephro, hepato, neuro cardio, and hematological toxicities associated with ifosfamide render its use limited. These side effects could range from organ failure to life-threatening situations. The present study aimed to evaluate the attenuating efficiency of Berberis vulgaris root extract (BvRE), a potent nephroprotective, hepatoprotective, and lipid-lowering agent, against ifosfamide-induced toxicities. The study design comprised eight groups of Swiss albino rats to assess different dose regimes of BvRE and ifosfamide. Biochemical analysis of serum (serum albumin, blood urea nitrogen, creatinine, alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase, total cholesterol, and triglycerides) along with complete blood count was performed. Kidney, liver, brain, and heart tissue homogenates were used to find malondialdehyde, catalase, and glutathione S-transferase levels in addition to the acetylcholinesterase of brain tissue. The results were further validated with the help of the histopathology of the selected organs. HeLa cells were used to assess the effect of BvRE on ifosfamide cytotoxicity in MTT assay. The results revealed that pre- and post-treatment regimens of BvRE, as well as the combination therapy exhibited marked protective effects against ifosfamide-induced nephro, hepato, neuro, and cardiotoxicity. Moreover, ifosfamide depicted a synergistic in vitro cytotoxic effect on HeLa cells in the presence of BvRE. These results corroborate that the combination therapy of ifosfamide with BvRE in cancer treatment can potentiate the anticancer effects of ifosfamide along with the amelioration of its conspicuous side effects.


Asunto(s)
Berberis/química , Encéfalo/efectos de los fármacos , Ifosfamida/farmacología , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Berberis/metabolismo , Recuento de Células Sanguíneas , Encéfalo/metabolismo , Encéfalo/patología , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Ratas
3.
Comput Biol Chem ; 89: 107376, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32979815

RESUMEN

Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb-palm-fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC50 value against Jurkat (9.67 µM) and MOTL-4 cells (11.8 µM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasa de Coronavirus/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Antivirales/química , COVID-19/virología , Línea Celular Tumoral , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasa de Coronavirus/química , Evaluación Preclínica de Medicamentos , Humanos , Células Jurkat , Modelos Moleculares , Estructura Molecular , Ubiquitina Tiolesterasa/metabolismo
4.
Infect Genet Evol ; 84: 104371, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32485331

RESUMEN

HCV is a viral infection posing a severe global threat when left untreated progress to end-stage liver disease, including cirrhosis and HCC. The NS5B polymerase of HCV is the most potent target that harbors four allosteric binding sites that could interfere with the HCV infection. We present the discovery of a novel synthetic compound that harbors the potential of NS5B polymerase inhibition. All eight compounds belonging to the benzothiazine family of heterocycles displayed no cellular cytotoxicity in HepG2 cells at nontoxic dose concentration (200 µM). Subsequently, among eight compounds of the series, merely compound 5b exhibited significant inhibition of the expression of the HCV NS5B gene as compared to DMSO control in semi-quantitative PCR. Based on our western blot result, 5b at the range of 50, 100 and 200 µM induced 20, 40, and 70% inhibition of NS5B protein respectively. To estimate the binding potential, 5b was docked at respective allosteric sites followed by molecular dynamics (MD) simulations for a period of 20 ns. In addition, binding free energy calculation by MM-GB/PBSA method revealed a conserved interaction profile of residues lining the allosteric sites in agreement with the reported NS5B co-crystallized inhibitors. The presented results provide important information about a novel compound 5b which may facilitate the the discovery of novel inhibitors that tends to target multiple sites on NS5B polymerase.


Asunto(s)
Antivirales/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Sitio Alostérico , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacocinética , Benzotiazoles/química , Simulación por Computador , Evaluación Preclínica de Medicamentos , Regulación Viral de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Relación Estructura-Actividad , Proteínas no Estructurales Virales/metabolismo
5.
Antioxidants (Basel) ; 8(7)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331076

RESUMEN

Members of genus Pteris have their established role in the traditional herbal medicine system. In the pursuit to identify its biologically active constituents, the specie Pteris cretica L. (P. cretica) was selected for the bioassay-guided isolation. Two new maleates (F9 and CB18) were identified from the chloroform extract and the structures of the isolates were elucidated through their spectroscopic data. The putative targets, that potentially interact with both of these isolates, were identified through reverse docking by using in silico tools PharmMapper and ReverseScreen3D. On the basis of reverse docking results, both isolates were screened for their antioxidant, acetylcholinesterase (AChE) inhibition, α-glucosidase (GluE) inhibition and antibacterial activities. Both isolates depicted moderate potential for the selected activities. Furthermore, docking studies of both isolates were also studied to investigate the binding mode with respective targets followed by molecular dynamics simulations and binding free energies. Thereby, the current study embodies the poly-pharmacological potential of P. cretica.

6.
Biomolecules ; 9(4)2019 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925835

RESUMEN

Tumorigenesis in humans is a multistep progression that imitates genetic changes leading to cell transformation and malignancy. Oncogenic kinases play a central role in cancer progression, rendering them putative targets for the design of anti-cancer drugs. The presented work aims to identify the potential multi-target inhibitors of oncogenic receptor tyrosine kinases (RTKs) and serine/threonine kinases (STKs). For this, chemoinformatics and structure-based virtual screening approaches were combined with an in vitro validation of lead hits on both cancerous and non-cancerous cell lines. A total of 16 different kinase structures were screened against ~739,000 prefiltered compounds using diversity selection, after which the top hits were filtered for promising pharmacokinetic properties. This led to the identification of 12 and 9 compounds against RTKs and STKs, respectively. Molecular dynamics (MD) simulations were carried out to better comprehend the stability of the predicted hit kinase-compound complexes. Two top-ranked compounds against each kinase class were tested in vitro for cytotoxicity, with compound F34 showing the most promising inhibitory activity in HeLa, HepG2, and Vero cell lines with IC50 values of 145.46 µM, 175.48 µM, and 130.52 µM, respectively. Additional docking of F34 against various RTKs was carried out to support potential multi-target inhibition. Together with reliable MD simulations, these results suggest the promising potential of identified multi-target STK and RTK scaffolds for further kinase-specific anti-cancer drug development toward combinatorial therapies.


Asunto(s)
Antineoplásicos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Células Hep G2 , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Células Vero
7.
ChemMedChem ; 8(8): 1373-83, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23836539

RESUMEN

The urgent need for new antibiotics poses a challenge to target un(der)exploited vital cellular processes. Thymidylate biosynthesis is one such process due to its crucial role in DNA replication and repair. Thymidylate synthases (TS) catalyze a crucial step in the biosynthesis of thymidine 5-triphosphate (TTP), an elementary building block required for DNA synthesis and repair. To date, TS inhibitors have only been successfully applied in anticancer therapy due to their lack of specificity for antimicrobial versus human enzymes. However, the discovery of a new family of TS enzymes (ThyX) in a range of pathogenic bacteria that is structurally and biochemically different from the "classic" TS (ThyA) has opened the possibility to develop selective ThyX inhibitors as potent antimicrobial drugs. Here, the interaction of the known inhibitor 5-(3-octanamidoprop-1yn-1yl)-2'-deoxyuridine-5'-monophosphate (1) with Mycobacterium tuberculosis ThyX enzyme is explored using molecular modeling starting from published crystal structures, with further confirmation through NMR experiments. While the deoxyuridylate (dUMP) moiety of compound 1 occupies the cavity of the natural substrate in ThyX, the rest of the ligand (the "5-alkynyl tail") extends to the outside of the enzyme between two of its four subunits. The hydrophobic pocket that accommodates the alkyl part of the tail is formed by displacement of Tyr 44.C, Tyr 108.A and Lys 165.A. Changes to the resonance of the Lys 165 NH3 group upon ligand binding were monitored in a titration experiment by 2D HISQC NMR. Guided by the results of the modeling and NMR studies, and inspired by the success of acyclic antiviral nucleosides, compounds where a 5-alkynyl uracyl moiety is coupled to an acyclic nucleoside phosphonate (ANP) were synthesized and evaluated. Of the compounds evaluated, sodium (6-(5-(3-octanamidoprop-1-yn-1-yl)-2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)hexyl)phosphonate (3 e) exhibited 43 % of inhibitory effect on ThyX at 50 µM. While only modest activity was achieved, this is the first example of an ANP inhibiting ThyX, and these results can be used to further guide structural modifications to this class to develop more potent compounds with potential application as antibacterial agents acting through a novel mechanism of action.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimología , Ácidos Fosforosos/química , Timidilato Sintasa/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Ácidos Fosforosos/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
8.
J Biol Chem ; 280(49): 41005-14, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16183648

RESUMEN

Mannose-binding proteins derived from several plants (i.e. Hippeastrum hybrid and Galanthus nivalis agglutinin) or prokaryotes (i.e. cyanovirin-N) inhibit human immunodeficiency virus (HIV) replication and select for drug-resistant viruses that show profound deletion of N-glycosylation sites in the GP120 envelope (Balzarini, J., Van Laethem, K., Hatse, S., Vermeire, K., De Clercq, E., Peumans, W., Van Damme, E., Vandamme, A.-M., Bolmstedt, A., and Schols, D. (2004) J. Virol. 78, 10617-10627; Balzarini, J., Van Laethem, K., Hatse, S., Froeyen, M., Van Damme, E., Bolmstedt, A., Peumans, W., De Clercq, E., and Schols, D. (2005) Mol. Pharmacol. 67, 1556-1565). Here we demonstrated that the N-acetylglucosamine-binding protein from Urtica dioica (UDA) prevents HIV entry and eventually selects for viruses in which conserved N-glycosylation sites in GP120 were deleted. In contrast to the mannose-binding proteins, which have a 50-100-fold decreased antiviral activity against the UDA-exposed mutant viruses, UDA has decreased anti-HIV activity to a very limited extent, even against those mutant virus strains that lack at least 9 of 22 ( approximately 40%) glycosylation sites in their GP120 envelope. Therefore, UDA represents the prototype of a new conceptual class of carbohydrate-binding agents with an unusually specific and targeted drug resistance profile. It forces HIV to escape drug pressure by deleting the indispensable glycans on its GP120, thereby obligatorily exposing previously hidden immunogenic epitopes on its envelope.


Asunto(s)
Fármacos Anti-VIH , Proteína gp120 de Envoltorio del VIH/química , VIH-1/efectos de los fármacos , Lectinas/farmacología , Lectinas de Plantas/farmacología , Polisacáridos/química , Sitios de Unión , Secuencia Conservada , Farmacorresistencia Viral , Genotipo , Glicosilación , Proteína gp120 de Envoltorio del VIH/fisiología , VIH-1/clasificación , VIH-1/genética , Lectina de Unión a Manosa/administración & dosificación , Lectina de Unión a Manosa/farmacología , Modelos Moleculares , Mutación , Polisacáridos/análisis , Urtica dioica/química , Cultivo de Virus
9.
Mol Pharmacol ; 67(5): 1556-65, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15718224

RESUMEN

The plant lectins from Hippeastrum hybrid (HHA) and Galanthus nivalis (GNA) are 50,000-D tetramers showing specificity for alpha-(1,3) and/or alpha-(1,6)-mannose oligomers. They inhibit HIV-1 infection at a 50% effective concentration of 0.2 to 0.3 microg/ml. Escalating HHA or GNA concentrations (up to 500 microg/ml) led to the isolation of three HIV-1(III(B)) strains in CEM T cell cultures that were highly resistant to HHA and GNA, several other related mannose-specific plant lectins, and the monoclonal antibody 2G12, modestly resistant to the mannose-specific cyanovirin, which is derived from a blue-green alga, but fully susceptible to other HIV entry inhibitors as well as HIV reverse transcriptase inhibitors. These mutant virus strains were devoid of up to seven or eight of 22 glycosylation sites in the viral envelope glycoprotein gp120 because of mutations at the Asn or Thr/Ser sites of the N-glycosylation motifs. In one of the strains, a novel glycosylation site was created near a deleted glycosylation site. The affected glycosylation sites were predominantly clustered in regions of gp120 that are not involved in the direct interaction with either CD4, CCR5, CXCR4, or gp41. The mutant viruses containing the deleted glycosylation sites were markedly more infectious in CEM T-cell cultures than wild-type virus.


Asunto(s)
Fármacos Anti-VIH/farmacología , Galanthus , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/metabolismo , Liliaceae , Lectinas de Unión a Manosa/farmacología , Línea Celular Tumoral , Glicosilación/efectos de los fármacos , Proteína gp120 de Envoltorio del VIH/química , VIH-1/química , Humanos , Lectinas de Unión a Manosa/aislamiento & purificación , Lectinas de Unión a Manosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA