Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Funct ; 12(20): 9549-9562, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34664582

RESUMEN

As non-coding RNA molecules, microRNAs (miRNAs) are widely known for their critical role in gene regulation. Recent studies have shown that plant miRNAs obtained through dietary oral administration can survive in the gastrointestinal (GI) tract, enter the circulatory system and regulate endogenous mRNAs. Diet-derived plant miRNAs have 2'-O-methylated modified 3'ends and high cytosine and guanine (GC) content, as well as exosomal packaging, which gives them high stability even in the harsh environment of the digestive system and circulatory system. The latest evidence shows that dietary plant miRNAs can not only be absorbed in the intestine, but also be absorbed and packaged by gastric epithelial cells and then secreted into the circulatory system. Alternatively, these biologically active plant-derived miRNAs may also affect the health of the host by affecting the function of the microbiome, while not need to be taken into the host's circulatory system and transferred to remote tissues. This cross-kingdom regulation of miRNAs gives us hope for exploring their therapeutic potential and as dietary supplements. However, doubts have also been raised about the cross-border regulation of miRNAs, suggesting that technical flaws in the experiments may have led to this hypothesis. In this article, we summarize the visibility of dietary plant miRNAs in the development of human health and recent research data on their use in therapeutics. The regulation of plant miRNAs across kingdoms is a novel concept. Continued efforts in this area will broaden our understanding of the biological role of plant miRNAs and will open the way for the development of new approaches to prevent or treat human diseases.


Asunto(s)
Suplementos Dietéticos , MicroARNs/genética , Plantas Comestibles , ARN de Planta/administración & dosificación , Tracto Gastrointestinal , Humanos , Fitoterapia
2.
PLoS One ; 11(6): e0156228, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27258320

RESUMEN

Solanum rostratum is a "super weed" that grows fast, is widespread, and produces the toxin solanine, which is harmful to both humans and other animals. To our knowledge, no study has focused on its molecular biology owing to the lack of available transgenic methods and sequence information for S. rostratum. Virus-induced gene silencing (VIGS) is a powerful tool for the study of gene function in plants; therefore, in the present study, we aimed to establish tobacco rattle virus (TRV)-derived VIGS in S. rostratum. The genes for phytoene desaturase (PDS) and Chlorophyll H subunit (ChlH) of magnesium protoporphyrin chelatase were cloned from S. rostratum and used as reporters of gene silencing. It was shown that high-efficiency VIGS can be achieved in the leaves, flowers, and fruit of S. rostratum. Moreover, based on our comparison of three different types of infection methods, true leaf infection was found to be more efficient than cotyledon and sprout infiltration in long-term VIGS in multiple plant organs. In conclusion, the VIGS technology and tomato genomic sequences can be used in the future to study gene function in S. rostratum.


Asunto(s)
Virus de Plantas/fisiología , Solanum/genética , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Virus de Plantas/genética
3.
Mol Cancer Ther ; 7(8): 2386-93, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18723485

RESUMEN

Aurora kinases have emerged as promising targets for cancer therapy because of their critical role in mitosis. These kinases are well-conserved in all eukaryotes, and IPL1 gene encodes the single Aurora kinase in budding yeast. In a virtual screening attempt, 22 compounds were identified from nearly 15,000 microbial natural products as potential small-molecular inhibitors of human Aurora-B kinase. One compound, Jadomycin B, inhibits the growth of ipl1-321 temperature-sensitive mutant more dramatically than wild-type yeast cells, raising the possibility that this compound is an Aurora kinase inhibitor. Further in vitro biochemical assay using purified recombinant human Aurora-B kinase shows that Jadomycin B inhibits Aurora-B activity in a dose-dependent manner. Our results also indicate that Jadomycin B competes with ATP for the kinase domain, which is consistent with our docking prediction. Like other Aurora kinase inhibitors, Jadomycin B blocks the phosphorylation of histone H3 on Ser10 in vivo. We also present evidence suggesting that Jadomycin B induces apoptosis in tumor cells without obvious effects on cell cycle. All the results indicate that Jadomycin B is a new Aurora-B kinase inhibitor worthy of further investigation.


Asunto(s)
Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Aurora Quinasa B , Aurora Quinasas , Western Blotting , Línea Celular , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Citometría de Flujo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Humanos , Isoquinolinas/química , Isoquinolinas/farmacología , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas/química , Proteínas Recombinantes/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA