Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Biol ; 61(1): 362-371, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36740871

RESUMEN

CONTEXT: Kazinol B (KB), an isoprenylated flavan derived from Broussonetia kazinoki Sieb. (Moraceae) root, has long been used in folk medicine. OBJECTIVE: This study examines the protective effects of KB and its underlying mechanisms in hypoxia and reoxygenation (H/R)-induced cardiac injury in H9c2 rat cardiac myoblasts. MATERIALS AND METHODS: H9c2 cells were incubated with various concentrations of KB (0, 0.3, 1, 3, 10 and 30 µM) for 2 h and then subjected to H/R insults. The protective effects of KB and its underlying mechanisms were explored. RESULTS: KB significantly elevated cell viability (1 µM, 1.21-fold; 3 µM, 1.36-fold, and 10 µM, 1.47-fold) and suppressed LDH release (1 µM, 0.77-fold; 3 µM, 0.68-fold, and 10 µM, 0.59-fold) in H/R-induced H9c2 cells. Further, 10 µM KB blocked apoptotic cascades, as shown by the Annexin-V/PI (0.41-fold), DNA fragmentation (0.51-fold), caspase-3 (0.52-fold), PARP activation (0.27-fold) and Bax/Bcl-2 expression (0.28-fold) assays. KB (10 µM) downregulated reactive oxygen species production (0.51-fold) and lipid peroxidation (0.48-fold); it upregulated the activities of GSH-Px (2.08-fold) and SOD (1.72-fold). KB (10 µM) induced Nrf2 nuclear accumulation (1.94-fold) and increased ARE promoter activity (2.15-fold), HO-1 expression (3.07-fold), AKT (3.07-fold) and AMPK (3.07-fold) phosphorylation. Nrf2 knockdown via using Nrf2 siRNA abrogated KB-mediated protective effects against H/R insults. Moreover, pharmacological inhibitors of AKT and AMPK also abrogated KB-induced Nrf2 activation and its protective function. DISCUSSION AND CONCLUSIONS: KB prevented H/R-induced cardiomyocyte injury via modulating the AKT and AMPK-mediated Nrf2 induction. KB might be a promising drug candidate for managing ischemic cardiac disorders.


Asunto(s)
Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Apoptosis , Estrés Oxidativo
2.
Eur J Pharm Biopharm ; 176: 133-152, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35525477

RESUMEN

To explore the immune adjuvant effect of nano mesoporous materials and laser immune effect of cancer therapy combined with chemotherapy, we designed a bionic nano tumor targeting delivery system with homologous cancer cell membrane as the outermost layer. Inorganic mesoporous silica (mSiO2) and hydroxyapatite (HAP) are used as the intermediate immune adjuvant layer and drug carrier layer, and gold nanorods(GNR) are used as the core. It degrade to release drug under the condition of low pH value, and the gold nanorods are wrapped for near-infrared laser response. Homologous cancer cell membrane wrapping is expected to greatly improve the efficiency of targeted delivery. Laser immunotherapy is more widely applied than antibody and vaccine, and has no serious side effects. Combined with controlled release drug targeted chemotherapy and encapsulated with tumor cell membrane, it is expected to further achieve low toxicity and high efficiency cancer treatment.


Asunto(s)
Nanotubos , Neoplasias , Biomimética , Línea Celular Tumoral , Doxorrubicina , Oro , Humanos , Inmunoterapia , Rayos Láser , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Dióxido de Silicio
3.
Biomater Sci ; 9(23): 7862-7875, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34676840

RESUMEN

The treatment efficiency of the Fenton reaction is expected to be greatly restricted due to problems such as inefficient delivery of Fenton catalysis, limited H2O2 concentration and uneven tumour tissue. Accurate photothermal therapy (PTT) could improve the efficiency of Fenton catalysis to some extent by raising the temperature. However, the heat shock response (HSR) of tumour cells caused by PTT and Fenton reaction would attenuate the treatment effect. In this study, we developed an iron ions-mediated Fenton reaction combined with a PTT treatment platform based on a metal-organic framework, i.e., PPy-CTD@MIL-100@MPCM nanoparticles (PCMM NPs), and further explored the inhibitory effect of PCMM NPs on the heat shock response (HSR). PCMM NPs could accumulate in tumour tissue via the coated macrophage cell membranes (MPCMs) to target inflammatory tissues. The photothermal effect of polypyrrole (PPy) accelerated the release of cantharidin (CTD) and iron ions loaded in the PCMM NPs. CTD, as an HSR inhibitor, could inhibit this response of tumour cells and improve the effect of PTT. Meanwhile, the heat generated during the PTT process could improve the efficiency of the Fenton reaction. This study suggested that PCMM NPs could serve as a combined treatment platform to enhance the Fenton reaction based on amplified photothermal therapy.


Asunto(s)
Cantaridina , Nanopartículas , Biomimética , Peróxido de Hidrógeno , Fototerapia , Terapia Fototérmica , Polímeros , Pirroles
4.
J Nanobiotechnology ; 18(1): 110, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32762751

RESUMEN

BACKGROUNDS: Due to the unexpected side effects of the iodinated contrast agents, novel contrast agents for X-ray computed tomography (CT) imaging are urgently needed. Nanoparticles made by heavy metal elements are often employed, such as gold and bismuth. These nanoparticles have the advantages of long in vivo circulation time and tumor targeted ability. However, due to the long residence time in vivo, these nanoparticles may bring unexpected toxicity and, the preparation methods of these nanoparticles are complicated and time-consuming. METHODS: In this investigation, a small molecular bismuth chelate using diethylenetriaminepentaacetic acid (DPTA) as the chelating agent was proposed to be an ideal CT contrast agent. RESULTS: The preparation method is easy and cost-effective. Moreover, the bismuth agent show better CT imaging for kidney than iohexol in the aspect of improved CT values. Up to 500 µM, the bismuth agent show negligible toxicity to L02 cells and negligible hemolysis. And, the bismuth agent did not induce detectable morphology changes to the main organs of the mice after intravenously repeated administration at a high dose of 250 mg/kg. The pharmacokinetics of the bismuth agent follows the first-order elimination kinetics and, it has a short half-life time of 0.602 h. The rapid clearance from the body promised its excellent biocompatibility. CONCLUSIONS: This bismuth agent may serve as a potential candidate for developing novel contrast agent for CT imaging in clinical applications.


Asunto(s)
Bismuto , Medios de Contraste , Tomografía Computarizada por Rayos X/métodos , Animales , Bismuto/química , Bismuto/farmacocinética , Bismuto/toxicidad , Medios de Contraste/química , Medios de Contraste/farmacocinética , Medios de Contraste/toxicidad , Yohexol/química , Yohexol/farmacocinética , Riñón/diagnóstico por imagen , Riñón/metabolismo , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Ratones , Ácido Pentético/química , Ácido Pentético/farmacocinética , Distribución Tisular , Imagen de Cuerpo Entero
5.
Cell Death Dis ; 11(4): 232, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286274

RESUMEN

Although angiogenesis inhibitors targeting VEGF/VEGFR2 have been applied for tumor therapy, the outcomes are still unsatisfactory. Thus, it is urgent to develop novel angiogenesis inhibitor for cancer therapy from new perspectives. Identification of novel angiogenesis inhibitor from natural products is believed to be one of most promising strategy. In this study, we showed that pristimerin, an active agent isolated from traditional Chinese herbal medicine Celastrus aculeatus Merr, was a novel tumor angiogenesis inhibitor that targeting sonic hedgehog (Shh)/glioma associated oncogene 1 (Gli1) signaling pathway in non-small cell lung cancer (NSCLC). We showed that pristimerin affected both the early- and late-stage of angiogenesis, suggesting by that pristimerin inhibited Shh-induced endothelial cells proliferation, migration, invasion as well as pericytes recruitment to the endothelial tubes, which is critical for the new blood vessel maturation. It also suppressed tube formation, vessel sprouts formation and neovascularization in chicken embryo chorioallantoic membrane (CAM). Moreover, it significantly decreased microvessel density (MVD) and pericyte coverage in NCI-H1299 xenografts, resulting in tumor growth inhibition. Further research revealed that pristimerin suppressed tumor angiogenesis by inhibiting the nucleus distribution of Gli1, leading to inactivation of Shh/Gli1 and its downstream signaling pathway. Taken together, our study showed that pristimerin was a promising novel anti-angiogenic agent for the NSCLC therapy and targeting Shh/Gli1 signaling pathway was an effective approach to suppress tumor angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Hedgehog/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/metabolismo , Masculino , Ratones , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
AAPS PharmSciTech ; 20(8): 316, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31602546

RESUMEN

Glucocorticoids have been confirmed to be effective in the treatment of a variety of inflammatory diseases. However, their application encounters limitations in terms of tissue distribution and bioavailability in vivo. To address these key issues, we designed and developed a nanopreparation by using egg yolk lecithin/sodium glycocholate (EYL/SGC) and utilize such mixed micelles (MMs) to encapsulate dexamethasone palmitate (DMP) for the treatment of rheumatoid arthritis (RA). The prepared DMP-MMs had an average particle size of 49.18 ± 0.43 nm and were compared with an emulsion-based dexamethasone palmitate. Pharmacokinetic and in vivo fluorescence imaging showed that mixed micelles had higher bioavailability and targeting efficiency in inflammatory sites. An arthritis rat model was established via induction by Complete Freund's Adjuvant (CFA), followed by the efficacy studies by the observations of paw volume, histology, spleen index, pro-inflammatory cytokines, and CT images. It was confirmed that intravenous injection of DMP-MMs exhibited advantages in alleviating joint inflammation compared with the emulsion system. Composed of pharmaceutical adjuvants only, the nanoscale mixed micelles seem a promising carrier system for the RA treatment with lipophilic drugs.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Dexametasona/administración & dosificación , Sistemas de Liberación de Medicamentos , Palmitatos/administración & dosificación , Animales , Artritis Experimental/tratamiento farmacológico , Dexametasona/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Emulsiones , Masculino , Micelas , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley
7.
J Nanobiotechnology ; 16(1): 83, 2018 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-30368238

RESUMEN

BACKGROUND: In order to explore the possibility of treating breast cancer by local photo-therapy, a photothermal agents loaded in situ hydrogel was established. In detail, The Cu2MnS2 nanoplates were prepared by one-pot synthesis and, the thermosensitive Pluronic F127 was used as the hydrogel matrix. The Cu2MnS2 nanoplates and the hydrogel were characterized by morphous, particle size, serum stability, photothermal performance upon repeated 808 nm laser irradiation as well as the rheology features. The therapeutic effects of the Cu2MnS2 nanoplates and the hydrogel were evaluated qualitatively and quantitatively in 4T1 mouse breast cancer cells. The retention, photothermal efficacy, therapeutic effects and systemic toxicity of the hydrogel were assessed in tumor bearing mouse model. RESULTS: The Cu2MnS2 nanoplates with a diameter of about 35 nm exhibited satisfying serum stability, photo-heat conversion ability and repeated laser exposure stability. The hydrogel encapsulation did not negatively influence the above features of the photothermal agent. The nanoplates loaded in situ hydrogel shows a phase transition at body temperature and, as a result, a long retention in vivo. CONCLUSIONS: The photothermal agent embedded hydrogel played a promising photothermal therapeutic effects in tumor bearing mouse model with low systemic toxicity after peritumoral administration.


Asunto(s)
Cobre/química , Hidrogeles/química , Hipertermia Inducida , Inyecciones , Neoplasias Mamarias Animales/terapia , Manganeso/química , Nanopartículas/química , Fototerapia , Sulfuros/química , Animales , Línea Celular Tumoral , Femenino , Neoplasias Mamarias Animales/patología , Ratones Endogámicos BALB C , Nanopartículas/ultraestructura , Poloxámero/química
8.
Mol Pharm ; 15(10): 4621-4631, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30179511

RESUMEN

The purpose of this research is to establish an injectable hydrogel encapsulating copper sulfide (CuS) nanodots for photothermal therapy against cancer. The CuS nanodots were prepared by one-pot synthesis, and the thermosensitive Pluronic F127 was used as the hydrogel matrix. The CuS nanodots and the hydrogel were characterized by morphous, particle size, serum stability, photothermal performance upon repeated 808 nm laser irradiation, and rheology features. The effects of the CuS nanodots and the hydrogel were evaluated qualitatively and quantitatively in 4T1 mouse breast cancer cells. The retention, photothermal efficacy, therapeutic effects, and systemic toxicity of the hydrogel were assessed in tumor bearing mouse model. The CuS nanodots with a diameter of about 8 nm exhibited satisfying serum stability, photoheat conversion ability, and repeated laser exposure stability. The hydrogel encapsulation did not negatively influence the above features of the photothermal agent. The nanodot-loaded hydrogel shows a phase transition at body temperature and, as a result, a long retention in vivo. The photothermal-agent-embedded hydrogel played a promising photothermal therapeutic effect in the tumor bearing mouse model with low systemic toxicity after peritumoral administration.


Asunto(s)
Cobre/química , Hidrogeles/química , Nanopartículas/química , Fototerapia/métodos , Animales , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Femenino , Ratones , Poloxámero/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA