Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 1040154, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467053

RESUMEN

Dehydroevodiamine (DHE) is a quinazoline alkaloid isolated from Evodiae Fructus (EF, Wuzhuyu in Chinese, Rutaceae family), a well-known traditional Chinese medicine (TCM) which is clinically applied to treat headache, abdominal pain, menstrual pain, abdominal distension, vomiting, acid regurgitation, etc. Modern research demonstrates that DHE is one of the main components of EF. In recent years, DHE has received extensive attention due to its various pharmacological activities. This review is the first to comprehensively summarize the current studies on pharmacokinetics profiles, pharmacological properties, and toxicological risks of DHE in diverse diseases. Pharmacokinetic studies have shown that DHE has a relatively good oral absorption effect in the mean concentration curves in rat plasma and high absorption in the gastrointestinal tract. In addition, distribution re-absorption and enterohepatic circulation may lead to multiple blood concentration peaks of DHE in rat plasma. DHE possesses a wide spectrum of pharmacological properties in the central nervous system, cardiovascular system, and digestive system. Moreover, DHE has anti-inflammatory effects via downregulating pro-inflammatory cytokines and inflammatory mediators. Given the favorable pharmacological activity, DHE is expected to be a potential drug candidate for the treatment of Alzheimer's disease, chronic stress, amnesia, chronic atrophic gastritis, gastric ulcers, and rheumatoid arthritis. In addition, toxicity studies have suggested that DHE has proarrhythmic effects and can impair bile acid homeostasis without causing hepatotoxicity. However, further rigorous and well-designed studies are needed to elucidate the pharmacokinetics, pharmacological effects, potential biological mechanisms, and toxicity of DHE.

2.
Front Med ; 15(4): 594-607, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33909257

RESUMEN

Psoraleae Fructus (PF) is a well-known traditional herbal medicine in China, and it is widely used for osteoporosis, vitiligo, and other diseases in clinical settings. However, liver injury caused by PF and its preparations has been frequently reported in recent years. Our previous studies have demonstrated that PF could cause idiosyncratic drug-induced liver injury (IDILI), but the mechanism underlying its hepatotoxicity remains unclear. This paper reports that bavachin isolated from PF enhances the specific stimuli-induced activation of the NLRP3 inflammasome and leads to hepatotoxicity. Bavachin boosts the secretion of IL-1ß and caspase-1 caused by ATP or nigericin but not those induced by poly(I:C), monosodium urate crystal, or intracellular lipopolysaccharide. Bavachin does not affect AIM2 or NLRC4 inflammasome activation. Mechanistically, bavachin specifically increases the production of nigericin-induced mitochondrial reactive oxygen species among the most important upstream events in the activation of the NLRP3 inflammasome. Bavachin increases the levels of aspartate transaminase and alanine aminotransferase in serum and hepatocyte injury accompanied by the secretion of IL-1ß via a mouse model of lipopolysaccharide-mediated susceptibility to IDILI. These results suggest that bavachin specifically enhances the ATP- or nigericin-induced activation of the NLRP3 inflammasome. Bavachin also potentially contributes to PF-induced idiosyncratic hepatotoxicity. Moreover, bavachin and PF should be evaded among patients with diseases linked to the ATP- or nigericin-mediated activation of the NLRP3 inflammasome, which may be a dangerous factor for liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Inflamasomas , Adenosina Trifosfato , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Flavonoides , Humanos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR , Nigericina
3.
JCI Insight ; 6(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33350984

RESUMEN

Aberrant activation of NLRP3 inflammasome has been implicated in a variety of human inflammatory diseases, but currently, no pharmacological NLRP3 inhibitor has been approved. In this study, we showed that echinatin, the ingredient of the traditional herbal medicine licorice, effectively suppresses the activation of NLRP3 inflammasome in vitro and in vivo. Further investigation revealed that echinatin exerts its inhibitory effect on NLRP3 inflammasome by binding to heat-shock protein 90 (HSP90), inhibiting its ATPase activity and disrupting the association between the cochaperone SGT1 and HSP90-NLRP3. Importantly, in vivo experiments demonstrated that administration of echinatin obviously inhibits NLRP3 inflammasome activation and ameliorates LPS-induced septic shock and dextran sodium sulfate-induced (DSS-induced) colitis in mice. Moreover, echinatin exerted favorable pharmacological effects on liver inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis (NASH). Collectively, our study identifies echinatin as a potentially novel inhibitor of NLRP3 inflammasome, and its use may be developed as a therapeutic approach for the treatment of NLRP3-driven diseases.


Asunto(s)
Chalconas/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Animales , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Colitis/tratamiento farmacológico , Colitis/etiología , Modelos Animales de Enfermedad , Femenino , Glycyrrhiza/química , Proteínas HSP90 de Choque Térmico/inmunología , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Técnicas In Vitro , Inflamasomas/inmunología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Leucocitos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Sustancias Protectoras/farmacología , Choque Séptico/inducido químicamente , Choque Séptico/prevención & control
5.
Acta Pharm Sin B ; 9(4): 734-744, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31384534

RESUMEN

Aberrant activation of NLRP3 inflammasome has been implicated in the pathogenesis of diverse inflammation-related diseases, and pharmacological molecules targeting NLRP3 inflammasome are of considerable value to identifying potential therapeutic interventions. Cardamonin (CDN), the major active ingredient of the traditional Chinese medicinal herb Alpinia katsumadai, has exerted an excellent anti-inflammatory activity, but the mechanism underlying this role is not fully understood. Here, we show that CDN blocks canonical and noncanonical NLRP3 inflammasome activation triggered by multiple stimuli. Moreover, the suppression of CDN on inflammasome activation is specific to NLRP3, not to NLRC4 or AIM2 inflammasome. Besides, the inhibitory effect is not dependent on the expression of NF-κB-mediated inflammasome precursor proteins. We also demonstrate that CDN suppresses the NLRP3 inflammasome through blocking ASC oligomerization and speckle formation in a dose-dependent manner. Importantly, CDN improves the survival of mice suffering from lethal septic shock and attenuates IL-1ß production induced by LPS in vivo, which is shown to be NLRP3 dependent. In conclusion, our results identify CDN as a broad-spectrum and specific inhibitor of NLRP3 inflammasome and a candidate therapeutic drug for treating NLRP3 inflammasome-driven diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA