Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Rheum Dis ; 78(11): 1524-1535, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31302596

RESUMEN

OBJECTIVE: Tumour necrosis factor alpha (TNF-α) signalling plays a central role in the pathogenesis of various autoimmune diseases, particularly inflammatory arthritis. This study aimed to repurpose clinically approved drugs as potential inhibitors of TNF-α signalling in treatment of inflammatory arthritis. METHODS: In vitro and in vivo screening of an Food and Drug Administration (FDA)-approved drug library; in vitro and in vivo assays for examining the blockade of TNF actions by fexofenadine: assays for defining the anti-inflammatory activity of fexofenadine using TNF-α transgenic (TNF-tg) mice and collagen-induced arthritis in DBA/1 mice. Identification and characterisation of the binding of fexofenadine to cytosolic phospholipase A2 (cPLA2) using drug affinity responsive target stability assay, proteomics, cellular thermal shift assay, information field dynamics and molecular dynamics; various assays for examining fexofenadine inhibition of cPLA2 as well as the dependence of fexofenadine's anti-TNF activity on cPLA2. RESULTS: Serial screenings of a library composed of FDA-approved drugs led to the identification of fexofenadine as an inhibitor of TNF-α signalling. Fexofenadine potently inhibited TNF/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) signalling in vitro and in vivo, and ameliorated disease symptoms in inflammatory arthritis models. cPLA2 was isolated as a novel target of fexofenadine. Fexofenadine blocked TNF-stimulated cPLA2 activity and arachidonic acid production through binding to catalytic domain 2 of cPLA2 and inhibition of its phosphorylation on Ser-505. Further, deletion of cPLA2 abolished fexofenadine's anti-TNF activity. CONCLUSION: Collectively, these findings not only provide new insights into the understanding of fexofenadine action and underlying mechanisms but also provide new therapeutic interventions for various TNF-α and cPLA2-associated pathologies and conditions, particularly inflammatory rheumatic diseases.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Fosfolipasas A2 Citosólicas/efectos de los fármacos , Terfenadina/análogos & derivados , Inhibidores del Factor de Necrosis Tumoral/farmacología , Animales , Ratones , Ratones Endogámicos DBA , Ratones Transgénicos , Transducción de Señal/efectos de los fármacos , Terfenadina/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
2.
Am J Transl Res ; 7(7): 1189-202, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26328004

RESUMEN

Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system among the elderly. The disease is caused by the slow deterioration of the dopaminergic neurons in the substantia nigra. Treatment strategies to protect dopaminergic neurons from progressive damage have received much attention. However there is no effective treatment for PD. Traditional Chinese medicines have shown potential clinical efficacy in attenuating the progression of PD. Increasing evidence indicates that constituents of some Chinese herbs include resveratrol, curcumin, and ginsenoside can be neuroprotective. Since pathologic processes in PD including inflammation, oxidative stress, apoptosis, mitochondrial dysfunction, and genetic factors lead to neuronal degeneration, and these Chinese herbs can protect dopaminergic neurons from neuronal degeneration, in this article, we review the neuroprotective roles of these herbs and summarize their anti-inflammatory, antioxidant, and anti-apoptotic effects in PD. In addition, we discuss their possible mechanisms of action in in vivo and in vitro models of PD. Traditional Chinese medicinal herbs, with their low toxicity and side-effects, have become the potential therapeutic interventions for prevention and treatment of PD and other neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA