Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 1181, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864033

RESUMEN

Diabetic cardiomyopathy is a primary myocardial injury induced by diabetes with complex pathogenesis. In this study, we identify disordered cardiac retinol metabolism in type 2 diabetic male mice and patients characterized by retinol overload, all-trans retinoic acid deficiency. By supplementing type 2 diabetic male mice with retinol or all-trans retinoic acid, we demonstrate that both cardiac retinol overload and all-trans retinoic acid deficiency promote diabetic cardiomyopathy. Mechanistically, by constructing cardiomyocyte-specific conditional retinol dehydrogenase 10-knockout male mice and overexpressing retinol dehydrogenase 10 in male type 2 diabetic mice via adeno-associated virus, we verify that the reduction in cardiac retinol dehydrogenase 10 is the initiating factor for cardiac retinol metabolism disorder and results in diabetic cardiomyopathy through lipotoxicity and ferroptosis. Therefore, we suggest that the reduction of cardiac retinol dehydrogenase 10 and its mediated disorder of cardiac retinol metabolism is a new mechanism underlying diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Cardiopatías , Enfermedades Metabólicas , Masculino , Animales , Ratones , Cardiomiopatías Diabéticas/genética , Vitamina A , Diabetes Mellitus Experimental/complicaciones , Tretinoina , Ratones Noqueados , Miocitos Cardíacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética
2.
Phytomedicine ; 23(6): 589-96, 2016 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-27161400

RESUMEN

BACKGROUND: Tanshinone IIA (Tan), the main active component of Salvia miltiorrhiza, has been demonstrated to have antioxidant activity. Acetaminophen (APAP), a widely used antipyretic and analgesic, can cause severe hepatotoxicity and liver failure when taken overdose. Oxidative stress has been reported to be involved in APAP-induced liver failure. PURPOSE: This study aimed to investigate the effect of Tan on APAP-induced hepatotoxicity and the underlying mechanisms involved. STUDY DESIGN: C57BL/6J mice were divided into six groups: (1) control, (2) APAP group, (3) APAP+Tan (30mg/kg) group, (4) Tan (30mg/kg) group, (5) APAP+Tan (10mg/kg) group, (6) Tan (10mg/kg) group. Mice in group 3 and 5 were pre-treated with specified dose of Tan by gavage and subsequently injected with an overdose of APAP intraperitoneally (i.p., 300mg/kg). The effect of Tan on Nrf2 pathway was investigated in HepG2 cells and mice. METHODS: Plasma aspartate transaminase (ALT), aspartate transaminase (AST), lactate dehydrogenase (LDH), liver glutathione (GSH), glutathione transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) levels were determined after mice were sacrificed. Lipid peroxidation and histological examination were performed. The effect of Tan on the Nrf2 pathway was detected by western blotting and qRT-PCR. RESULTS: Tan pretreatment reduced APAP-induced liver injury. Tan was able to activate Nrf2 and increase the expression levels of Nrf2 target genes, including glutamate-cysteine ligase catalytic subunit (GCLC), NAD(P)H:quinine oxidoreductase 1 (NQO1) and hemeoxygenase-1 (HO-1), in a dose-dependent manner in HepG2 cells. Consistent with our observations in HepG2 cells, Tan increased nuclear Nrf2 accumulation and upregulated mRNA and protein levels of the Nrf2 target genes GCLC, NQO1 and HO-1 in C57BL/6J mice compared with mice treated with APAP alone. CONCLUSIONS: Our results demonstrate that Tan pretreatment could protect the liver from APAP-induced hepatic injury by activating the Nrf2 pathway. Tan may provide a new strategy for the protection against APAP-induced liver injury.


Asunto(s)
Abietanos/farmacología , Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Salvia miltiorrhiza/química
3.
Phytomedicine ; 22(10): 894-901, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26321738

RESUMEN

BACKGROUND: Triptolide, an active ingredient extracted from the Chinese herb Tripterygium wilfordii Hook f., has multiple pharmacological properties, including anti-inflammatory, immune-modulatory, and anti-proliferative activities. However, the hepatotoxicity of triptolide always limits its clinical applications. HYPOTHESIS/PURPOSE: Farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays a key role in hepatoprotection through the maintenance of liver metabolism homeostasis. This study explored the role of FXR in triptolide-induced cytotoxicity and investigated whether activation of FXR can protect against triptolide-induced liver injury. STUDY DESIGN: The role of FXR in triptolide-induced cytotoxicity was investigated in HepG2 cells. In addition, the protective effect of the selective FXR agonist GW4064 on triptolide-induced hepatotoxicity was explored in BALB/c mice. METHODS: HepG2 cells were transient transfected with FXR expression plasmid or FXR-siRNA. The cytotoxicity was compared using the MTT assay. The extent of liver injury was assessed by histopathology and serum aminotransferases. The expression of FXR and its target genes were detected by Western blot and qRT-PCR. RESULTS: The transient overexpression of FXR protected against triptolide-induced cell death, whereas FXR knockdown with a specific small interfering RNA resulted in increased cytotoxicity. In BALB/c mice, treatment with the FXR agonist GW4064 attenuated triptolide-induced liver dysfunction, structural damage, glutathione depletion and lipid peroxidation. Moreover, the livers of GW4064-treated mice showed increased expression of FXR and several related target genes involved in phase II and phase III xenobiotic metabolism. CONCLUSION: Taken together, these results indicate that activation of FXR attenuates triptolide-induced hepatotoxicity and provide direct implications for the development of novel therapeutic strategies against triptolide-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Diterpenos/toxicidad , Hígado/efectos de los fármacos , Fenantrenos/toxicidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Compuestos Epoxi/toxicidad , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Isoxazoles/farmacología , Masculino , Ratones Endogámicos BALB C , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA