Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chin Med ; 14: 39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572491

RESUMEN

BACKGROUND: To investigate the effects and immunological mechanisms of the traditional Chinese medicine Xinjiaxiangruyin on controlling influenza virus (FM1 strain) infection in mice housed in a hygrothermal environment. METHODS: Mice were housed in normal and hygrothermal environments, and intranasally infected with influenza virus (FM1). A high-performance liquid chromatography fingerprint of Xinjiaxiangruyin was used to provide an analytical method for quality control. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to measure messenger RNA expression of Toll-like receptor 7 (TLR7), myeloid differentiation primary response 88 (MyD88), and nuclear factor-kappa B (NF-κB) p65 in the TLR7 signaling pathway and virus replication in the lungs. Western blotting was used to measure the expression levels of TLR7, MyD88, and NF-κB p65 proteins. Flow cytometry was used to detect the proportion of Th17/T-regulatory cells. RESULTS: Xinjiaxiangruyin effectively alleviated lung inflammation in C57BL/6 mice in hot and humid environments. Guizhimahuanggebantang significantly reduced lung inflammation in C57BL/6 mice. The expression of TLR7, MyD88, and NF-κB p65 mRNA in lung tissue of WT mice in the normal environment, GZMHGBT group was significantly lower than that in the model group (P < 0.05). In WT mice exposed to the hot and humid environment, the expression levels of TLR7, MyD88, and NF-κB p65 mRNA in the XJXRY group were significantly different from those in the virus group. The expression levels of TLR7, MyD88, and NF-κB p65 protein in lung tissue of WT mice exposed to the normal environment, GZMHGBT group was significantly lower than those in the model group. In WT mice exposed to hot and humid environments, the expression levels of TLR7, MyD88, and NF-κB p65 protein in XJXRY group were significantly different from those in the virus group. CONCLUSION: Guizhimahuanggebantang demonstrated a satisfactory therapeutic effect on mice infected with the influenza A virus (FM1 strain) in a normal environment, and Xinjiaxiangruyin demonstrated a clear therapeutic effect in damp and hot environments and may play a protective role against influenza through downregulation of the TLR7 signal pathway.

2.
Phytother Res ; 32(12): 2560-2567, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30306659

RESUMEN

Berberine, a natural isoquinoline alkaloid isolated from the berberis species, has a wide array of biological properties such as anti-inflammatory, antibacterial, antifungal, and antihelminthic effects. We evaluated the antiviral effect of berberine against influenza A/FM1/1/47 (H1N1) in vivo and in vitro. The results showed that berberine strongly suppressed viral replication in A549 cells and in mouse lungs. Meanwhile, berberine relieved pulmonary inflammation and reduced necrosis, inflammatory cell infiltration, and pulmonary edema induced by viral infection in mice when compared with vehicle-treated mice. Berberine suppressed the viral infection-induced up-regulation of TLR7 signaling pathway, such as TLR7, MyD88, and NF-κB (p65), at both the mRNA and protein levels. Furthermore, berberine significantly inhibited the viral infection-induced increase in Th1/Th2 and Th17/Treg ratios as well as the production of inflammatory cytokines. Our data provide new insight into the potential of berberine as a therapeutic agent for viral infection via its antiviral activity.


Asunto(s)
Antivirales/farmacología , Berberina/farmacología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Animales , Antivirales/uso terapéutico , Berberina/uso terapéutico , Embrión de Pollo , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/diagnóstico , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/diagnóstico , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Neumonía/diagnóstico , Neumonía/tratamiento farmacológico , Neumonía/virología , Pronóstico , Transducción de Señal/efectos de los fármacos
3.
Chin Med ; 13: 42, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151032

RESUMEN

BACKGROUND: Influenza virus is a single-stranded RNA virus that causes influenza in humans and animals. About 600 million people around the world suffer from influenza every year. Upon recognizing viral RNA molecules, TLR7 (Toll-like receptor) initiates corresponding immune responses. Traditional Chinese Medicines (TCMs), including Yinqiao powder, Xinjiaxiangruyin and Guizhi-and-Mahuang decoction, have been extensively applied in clinical treatment of influenza. Although the therapeutic efficacy of TCMs against influenza virus in vivo was reported previously, its underlying mechanisms are not clearly understood. This study aimed to investigate the immunological mechanisms in the treatment of influenza virus infected mice with three Chinese herbal compounds as well as the effect on TLR7/NF-κB signaling pathway during recovery. METHODS: Wild type and TLR7 KO C57BL/6 mice were infected with influenza virus FM1 and then treated with three TCMs. The physical parameters of mice (body weight and lung index) and the expression levels of components in TLR7/NF-κB signaling pathway were evaluated. RESULTS: After viral infection, Guizhi-and-Mahuang decoction and Yinqiao powder showed better anti-viral effect under normal condition. Compared to the viral control group, expression levels of TLR7, MyD88, IRAK4 and NF-κB were significantly reduced in all treatment groups. Furthermore, the three TCM treatment groups showed poor therapeutic efficacy and no difference in viral load compared to the viral control group in TLR7 KO mice. CONCLUSION: Our study indicated that Guizhi-and-Mahuang decoction and Yinqiao powder might play a crucial role of anti-influenza virus by regulating TLR7/NF-κB signal pathway.

4.
Artículo en Inglés | MEDLINE | ID: mdl-29849712

RESUMEN

OBJECTIVE: We wished to investigate the effects of the traditional Chinese medicine Gui Zhi Ma Huang Ge Ban Tang on controlling influenza A virus (IAV) infection and improving inflammation in mouse lungs. METHOD: Mice were maintained in normal and cold environments and infected with IAV by intranasal application, respectively. Real-time quantitative polymerase chain reaction was used to measure mRNA expression of TLR7, myeloid differentiation primary response 88 (MyD88), and nuclear factor-kappa B (NF-κB)p65 in the TLR7 signaling pathway and virus replication in lungs. Western blotting was used to measure expression levels of TLR7, MyD88, and NF-κB p65 proteins. Flow cytometry was used to detect the proportion of T-helper (Th)1/Th2 and Th17/T-regulatory (Treg) cells. RESULTS: Application of Gui Zhi Ma Huang Ge Ban Tang in influenza-infected mice in a cold environment showed (i) downregulation of TLR7, MyD88, and NF-κBp65; (ii) inhibition of transcriptional activities of promoters coding for TLR7, MyD88, and NF-κBp65; (iii) reduction in the proportion of Th1/Th2 and Th17/Treg cells. CONCLUSIONS: Gui Zhi Ma Huang Ge Ban Tang had a good therapeutic effect on mice infected with IAV, especially in the cold environment. It could reduce lung inflammation in mice significantly and elicit an anti-influenza effect by downregulating expression of the key factors in TLR7 signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA