Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 109: 154594, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36610115

RESUMEN

BACKGROUND: Over-activation of N-methyl-D-aspartate receptors (NMDARs) is involved in sporadic Alzheimer's disease. Silibinin, a natural flavonoid gained from the seeds of Silybum marianum, exerts neuroprotective effects on sporadic AD models, but its impacts on NMDARs remain unknown. PURPOSE: To study silibinin's regulatory effects on NMDARs pathway in sporadic AD models. METHODS: MTT assay, western blotting, confocal microscopy, flow cytometry, RT-PCR, and siRNA transfection etc. were used for cellular and molecular studies. The direct interactions between silibinin and NMDAR subunits were evaluated by computational molecular docking, drug affinity responsive target stability (DARTS) assay and cellular thermal shift assay (CETSA). Y maze test, novel objects recognition test and Morris water maze test were conducted to examine the learning and memory ability of rats. RESULTS: An in vitro AD model was established by treating HT22 murine hippocampal neurons with streptozotocin (STZ), as evidenced by the amyloid ß (Aß) deposition and hyperphosphorylation of tau proteins. Silibinin shows protection of neurons against STZ-induced cell damage. It is noteworthy that STZ-induced cellular calcium influx is inhibited by silibinin-treatment, indicating the possible modulation of calcium channels. Studies on NMDARs, the most widely distributed calcium channel, by using molecular docking, DARTS and CESTA, reveal that the GluN2B subunit, but not GluN2A, is the potential target of silibinin. Further studies using the pharmacological agonist (NMDA) and the GluN2B-specific inhibitor (Ifenprodil) or siRNA, indicate that the protection by silibinin treatment from STZ-induced cytotoxicity is medicated through interference with GluN2B-containing NMDARs, followed by the upregulation of CaMKIIα/ BDNF/ TrkB signaling pathway and improved levels of synaptic proteins (SYP and PSD-95). The results in vivo using rats intracerebroventricularly injected with STZ (ICV-STZ), a well-established sporadic AD model, confirm that silibinin improves learning and memory ability in association with modulation of the GluN2B/CaMKIIα/ BDNF/TrkB signaling pathway. CONCLUSION: Inhibiting over-activation of GluN2B-containing NMDARs is involved in the neuroprotective effect of silibinin on STZ-induced sporadic AD models.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratas , Ratones , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Péptidos beta-Amiloides/metabolismo , Silibina/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estreptozocina , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad
2.
Toxicol In Vitro ; 80: 105330, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35158046

RESUMEN

Silibinin is a natural polyphenolic flavonoid, isolated from the seeds of the milk thistle of Silybum marianum (L.) Gaertn. Silibinin has been widely used clinically as a traditional medicine for liver diseases. This study investigated the protective role of silibinin in ethanol- or acetaldehyde-induced apoptosis in human carcinomatous liver HepG2 cells and immortalized liver HL7702 cells, focusing on elucidation of the underlying mechanism in vitro. The toxicity of ethanol or acetaldehyde was evaluated by MTT assay. Apoptosis-related proteins, mitochondrial fission-associated proteins and mitochondrial fusion-associated proteins were analyzed by western blotting and immunofluorescence microscopy. Present experimental results demonstrated that silibinin improved cell viability, reduced the enzyme activities of AST/ALT and ALDH/ADH, inhibited apoptosis and recovered mitochondrial function in ethanol- or acetaldehyde-treated HepG2 or HL7702 cells. Silibinin reduced the expression of mitochondrial fission-associated proteins, dynamin-related protein 1 (DRP1), but increased mitochondrial fusion-associated proteins, optic atrophy 1 (OPA1) and mitofusin 1 (MFN1). Accordingly, inhibition of DRP1 activity with its pharmacological inhibitor or siDRP1 efficiently attenuated ethanol- or acetaldehyde-induced apoptosis, whereas activation of DRP1 by using staurosporine (STS) further increased apoptosis in ethanol- or acetaldehyde-treated HepG2 or HL7702 cells. The results show that silibinin protects cells against ethanol- or acetaldehyde-induced mitochondrial fission that results in apoptosis.


Asunto(s)
Acetaldehído/toxicidad , Etanol/toxicidad , Dinámicas Mitocondriales/efectos de los fármacos , Sustancias Protectoras/farmacología , Silibina/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Hígado/citología , Proteínas Mitocondriales/metabolismo
3.
Neurochem Res ; 46(9): 2317-2332, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34097239

RESUMEN

Besides motor disorder, cognitive dysfunction is also common in Parkinson's disease (PD). Essentially no causal therapy for cognitive dysfunction of PD exists at present. In this study, a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD was used to analyze the neuroprotective potential of orally administered silibinin, a proverbial hepatoprotective flavonoid derived from the herb milk thistle (Silybum marianum). Results demonstrated that silibinin administration significantly attenuated MPTP-induced cognitive impairment in behavioral tests. Nissl staining results showed that MPTP injection significantly increases the loss of neurons in the hippocampus. However, these mice were protected by oral administration of silibinin, accompanying reduction in the cell apoptosis in the hippocampus. The hippocampal aggregates of α-synuclein (α-syn) appeared in MPTP-injected mice, but were significantly decreased by silibinin treatment. MPTP injection induced oxidative stress, as evidenced by increased malondialdehyde (MDA) and decreased superoxide dismutase (SOD). The oxidative stress was alleviated by silibinin treatment. Mitochondrial disorder including the decline of mitochondrial membrane potential (MMP) was another signature in the hippocampus of MPTP-treated mice, accompanying increased mitochondrial fission and decreased fusion. Silibinin administration restored these mitochondrial disorders, as expected for the protection against MPTP injury. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for cognitive dysfunction in PD.


Asunto(s)
Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Trastornos Parkinsonianos/tratamiento farmacológico , Silibina/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Memantina/uso terapéutico , Ratones Endogámicos C57BL , Enfermedades Mitocondriales/inducido químicamente , Enfermedades Mitocondriales/patología , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Prueba de Campo Abierto/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Silibina/administración & dosificación , alfa-Sinucleína/metabolismo
4.
Regen Ther ; 8: 73-79, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30271869

RESUMEN

Keratinocyte line cells HaCaT and FEPE1L-8 are used for skin model with type I collagen fibrils (gels). For this purpose, not only differentiation but also regulation of proliferation on type I collagen gels by exogenous calcium concentration is important. When exogenous calcium concentration is low, primary keratinocyte proliferation is repressed and eventually cells are induced to apoptosis on type I collagen gels. The apoptosis induced on type I collagen gels is suppressed by increasing calcium concentration in the medium. That is, higher exogenous calcium concentration is necessary for primary keratinocyte survival on type I collagen gels than for that on dish surface culture. Meanwhile much higher exogenous calcium causes cell differentiation and inhibition of proliferation. The optimal calcium concentrations for proliferation on type I collagen gels have not been clarified in keratinocyte line cells. HaCaT cells have a unique calcium sensitivity in comparison with primary keratinocytes, whereas FEPE1L-8 cells have a similar sensitivity to primary keratinocytes. In this study, we compared the effect of calcium concentrations on proliferation of HaCaT and FEPE1L-8 cells on type I collagen gels. On type I collagen gels, both line cells required higher calcium concentrations for proliferation than on dish surface. HaCaT cells proliferated better in a wider range of calcium concentrations than FEPE1L-8 cells.

5.
Mol Cell Biochem ; 441(1-2): 35-62, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28933025

RESUMEN

Migration of fibroblast-like preadipocytes is important for the development of adipose tissue, whereas excessive migration is often responsible for impaired adipose tissue related with obesity and fibrotic diseases. Type I collagen (collagen I) is the most abundant component of extracellular matrix and has been shown to regulate fibroblast migration in vitro, but its role in adipose tissue is not known. Silibinin is a bioactive natural flavonoid with antioxidant and antimetastasis activities. In this study, we found that type I collagen coating promoted the proliferation and migration of murine 3T3-L1 preadipocytes in a dose-dependent manner, implying that collagen I could be an extracellular signal. Regarding the mechanisms of collagen I-stimulated 3T3-L1 migration, we found that NF-κB p65 is activated, including the increased nuclear translocation of NF-κB p65 as well as the upregulation of NF-κB p65 phosphorylation and acetylation, accompanied by the increased expressions of proinflammatory factors and the generation of reactive oxygen species (ROS). Reduction of collagen I-enhanced migration of cells by treatment with silibinin was associated with suppression of NF-κB p65 activity and ROS generation, and negatively correlated with the increasing sirt1 expression. Taken together, the enhanced migration of 3T3-L1 cells induced on collagen I-coated dish is mediated by the activation of NF-κB p65 function and ROS generation that can be alleviated with silibinin by upregulation of sirt1, leading to the repression of NF-κB p65 function and ROS generation.


Asunto(s)
Adipocitos/metabolismo , Movimiento Celular/efectos de los fármacos , Colágeno Tipo I/química , Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Silimarina/farmacología , Células 3T3-L1 , Adipocitos/citología , Animales , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Ratones , Silibina , Factor de Transcripción ReIA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA