Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 294(9): 3091-3099, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30606736

RESUMEN

The tricarboxylic acid (TCA) cycle (or citric acid cycle) is responsible for the complete oxidation of acetyl-CoA and formation of intermediates required for ATP production and other anabolic pathways, such as amino acid synthesis. Here, we uncovered an additional mechanism that may help explain the essential role of the TCA cycle in the early embryogenesis of Caenorhabditis elegans. We found that knockdown of citrate synthase (cts-1), the initial and rate-limiting enzyme of the TCA cycle, results in early embryonic arrest, but that this phenotype is not because of ATP and amino acid depletions. As a possible alternative mechanism explaining this developmental deficiency, we observed that cts-1 RNAi embryos had elevated levels of intracellular acetyl-CoA, the starting metabolite of the TCA cycle. Of note, we further discovered that these embryos exhibit hyperacetylation of mitochondrial proteins. We found that supplementation with acetylase-inhibiting polyamines, including spermidine and putrescine, counteracted the protein hyperacetylation and developmental arrest in the cts-1 RNAi embryos. Contrary to the hypothesis that spermidine acts as an acetyl sink for elevated acetyl-CoA, the levels of three forms of acetylspermidine, N1-acetylspermidine, N8-acetylspermidine, and N1,N8-diacetylspermidine, were not significantly increased in embryos treated with exogenous spermidine. Instead, we demonstrated that the mitochondrial deacetylase sirtuin 4 (encoded by the sir-2.2 gene) is required for spermidine's suppression of protein hyperacetylation and developmental arrest in the cts-1 RNAi embryos. Taken together, these results suggest the possibility that during early embryogenesis, acetyl-CoA consumption by the TCA cycle in C. elegans prevents protein hyperacetylation and thereby protects mitochondrial function.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Ciclo del Ácido Cítrico , Desarrollo Embrionario , Proteínas Mitocondriales/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Ácido Aspártico/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Citrato (si)-Sintasa/deficiencia , Citrato (si)-Sintasa/genética , Ácido Cítrico/metabolismo , Ácido Glutámico/metabolismo , Espacio Intracelular/metabolismo , Factores de Tiempo
2.
Cell Rep ; 18(8): 2030-2044, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28228267

RESUMEN

The relationship between loss of hypothalamic function and onset of diabetes mellitus remains elusive. Therefore, we generated a targeted oxidative-stress murine model utilizing conditional knockout (KO) of selenocysteine-tRNA (Trsp) using rat-insulin-promoter-driven-Cre (RIP-Cre). These Trsp-KO (TrspRIPKO) mice exhibit deletion of Trsp in both hypothalamic cells and pancreatic ß cells, leading to increased hypothalamic oxidative stress and severe insulin resistance. Leptin signals are suppressed, and numbers of proopiomelanocortin-positive neurons in the hypothalamus are decreased. In contrast, Trsp-KO mice (TrspIns1KO) expressing Cre specifically in pancreatic ß cells, but not in the hypothalamus, do not display insulin and leptin resistance, demonstrating a critical role of the hypothalamus in the onset of diabetes mellitus. Nrf2 (NF-E2-related factor 2) regulates antioxidant gene expression. Increased Nrf2 signaling suppresses hypothalamic oxidative stress and improves insulin and leptin resistance in TrspRIPKO mice. Thus, Nrf2 harbors the potential to prevent the onset of diabetic mellitus by reducing hypothalamic oxidative damage.


Asunto(s)
Hipotálamo/metabolismo , Resistencia a la Insulina/fisiología , Leptina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología , Animales , Antioxidantes/metabolismo , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/fisiología , ARN de Transferencia Aminoácido-Específico/metabolismo , Transducción de Señal/fisiología
3.
Nat Neurosci ; 20(2): 230-241, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27991901

RESUMEN

Body fluid conditions are continuously monitored in the brain to regulate thirst and salt-appetite sensations. Angiotensin II drives both thirst and salt appetite; however, the neural mechanisms underlying selective water- and/or salt-intake behaviors remain unknown. Using optogenetics, we show that thirst and salt appetite are driven by distinct groups of angiotensin II receptor type 1a-positive excitatory neurons in the subfornical organ. Neurons projecting to the organum vasculosum lamina terminalis control water intake, while those projecting to the ventral part of the bed nucleus of the stria terminalis control salt intake. Thirst-driving neurons are suppressed under sodium-depleted conditions through cholecystokinin-mediated activation of GABAergic neurons. In contrast, the salt appetite-driving neurons were suppressed under dehydrated conditions through activation of another population of GABAergic neurons by Nax signals. These distinct mechanisms in the subfornical organ may underlie the selective intakes of water and/or salt and may contribute to body fluid homeostasis.


Asunto(s)
Apetito , Ingestión de Líquidos/fisiología , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Sensación/efectos de los fármacos , Cloruro de Sodio/farmacología , Sed/fisiología , Animales , Apetito/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ingestión de Líquidos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/fisiología , Órgano Subfornical/metabolismo
4.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 3): 331-8, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16510980

RESUMEN

The crystal structure of a self-complementary RNA duplex r(GGCG(Br)UGCGCU)(2) with terminal G.U and internal tandem G.U base pairs has been determined at 2.1 Angstroms resolution. The crystals belong to the tetragonal space group P4(3), with unit-cell parameters a = b = 37.69, c = 96.28 Angstroms and two duplexes in the asymmetric unit. The two strands of each duplex are related by a pseudodyad axis. The structure was refined to final R(work) and R(free) values of 20.9 and 25.3%, respectively. The duplexes stack in an end-to-end manner, forming infinite columns along the c axis. This is the first structural study of an RNA duplex containing G.U pairs at the termini. The stacking overlaps of the terminal G.U base pairs with their adjacent Watson-Crick base pairs are larger than those of Watson-Crick base pairs of the 5'-YR-3'/3'-RY-5' type. The terminal G.U base pairs of neighbouring duplexes are also stacked with each other. An alternating underwound-overwound pattern of the twist angles is seen at each step along the duplex. This observation is typical for internal tandem G.U pairs, while the terminal G.U base pairs exhibit high twist angles with the adjacent Watson-Crick pairs. The 3'-side of U of the internal G.U base pair, which is unstacked, appears to be stabilized by pi-cation interaction with an Mg(2+) ion.


Asunto(s)
Oligonucleótidos/química , ARN/química , Emparejamiento Base , Magnesio/química , Modelos Moleculares , Conformación de Ácido Nucleico
5.
J Biol Chem ; 279(25): 26274-9, 2004 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-15087458

RESUMEN

APJ is a G-protein-coupled receptor with seven transmembrane domains, and its endogenous ligand, apelin, was identified recently. They are highly expressed in the cardiovascular system, suggesting that APJ is important in the regulation of blood pressure. To investigate the physiological functions of APJ, we have generated mice lacking the gene encoding APJ. The base-line blood pressure of APJ-deficient mice is equivalent to that of wild-type mice in the steady state. The administration of apelin transiently decreased the blood pressure of wild-type mice and a hypertensive model animal, a spontaneously hypertensive rat. On the other hand, this hypotensive response to apelin was abolished in APJ-deficient mice. This apelin-induced response was inhibited by pretreatment with a nitric-oxide synthase inhibitor, and apelin-induced phosphorylation of endothelial nitric-oxide synthase in lung endothelial cells from APJ-deficient mice disappeared. In addition, APJ-deficient mice showed an increased vasopressor response to the most potent vasoconstrictor angiotensin II, and the base-line blood pressure of double mutant mice homozygous for both APJ and angiotensin-type 1a receptor was significantly elevated compared with that of angiotensin-type 1a receptor-deficient mice. These results demonstrate that APJ exerts the hypotensive effect in vivo and plays a counterregulatory role against the pressor action of angiotensin II.


Asunto(s)
Receptor de Angiotensina Tipo 1/química , Receptores Acoplados a Proteínas G/fisiología , Alelos , Angiotensina II/metabolismo , Animales , Receptores de Apelina , Presión Sanguínea , Northern Blotting , ADN Complementario/metabolismo , Endotelio/enzimología , Endotelio Vascular/metabolismo , Inhibidores Enzimáticos/farmacología , Homocigoto , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Modelos Genéticos , NG-Nitroarginina Metil Éster/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Fosforilación , Estructura Terciaria de Proteína , ARN/metabolismo , Ratas , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Recombinación Genética , Serina/química , Factores de Tiempo
6.
Int J Mol Med ; 13(5): 637-42, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15067362

RESUMEN

We previously identified a regulatory element at the 3'-downstream region of the human angiotensinogen (hANG) gene. Using this element as a probe by the Southwestern screening, we isolated a cDNA clone, encoding Finb, a transcriptional activator with multiple zinc finger domains. The N-terminal zinc finger domain of Finb bound to the GGATGG sequence within the regulatory element. Unexpectedly, Finb repressed transcription dependent on the regulatory element. Inspection of the 5'-flanking region in the hANG promoter identified the GGATGG-like elements, which prompted us to examine the effect of Finb on the hANG promoter activity. We also found the two Finb binding elements in the 5'-flanking region of the hANG gene by the gel shift assay, both of which were necessary for transcriptional repression of the hANG promoter. These findings suggest that Finb functions as a sequence-specific transcriptional repressor of the hANG gene.


Asunto(s)
Angiotensinógeno/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Dedos de Zinc , Secuencia de Bases , Línea Celular Tumoral , Clonación Molecular , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/química , Elementos de Respuesta/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA