Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neuroendocrinol ; 35(12): e13351, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37901949

RESUMEN

Serotonergic neurons originating from the raphe nuclei have been proposed to regulate corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVH). Since glutamate- and γ-aminobutyric acid (GABA)-containing neurons, constituting the hypothalamic local circuits, innervate PVH CRF neurons, we examined whether they mediate the actions of serotonin (5-hydroxytryptamine [5-HT]) on CRF neurons. Spontaneous excitatory postsynaptic currents (sEPSCs) or spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in PVH CRF neurons, under whole cell patch-clamp, using the CRF-modified yellow fluorescent protein (Venus) ΔNeo mouse. Serotonin elicited an increase in the frequency of sEPSCs in 77% of the cells and a decrease in the frequency of sIPSCs in 71% of the cells, tested in normal medium. Neither the amplitude nor decay time of sEPSC and sIPSC was affected, thus the site(s) of action of serotonin may be presynaptic. In the presence of tetrodotoxin (TTX), serotonin had no significant effects on either parameter of sEPSC or sIPSC, indicating that the effects of serotonin are action potential-dependent, and that the presynaptic interneurons are largely intact within the slice; distant neurons may exist, though, since some 20%-30% of neurons did not respond to serotonin without TTX. We next examined through what receptor subtype(s) serotonin exerts its effects on presynaptic interneurons. DOI (5-HT2A/2C agonist) mimicked the action of serotonin on the sIPSCs, and the serotonin-induced decrease in sIPSC frequency was inhibited by a selective 5-HT2C antagonist RS102221. 8-OH-DPAT (5-HT1A/7 agonist) mimicked the action of serotonin on the sEPSCs, and the serotonin-induced increase in sEPSC frequency was inhibited by a selective 5-HT7 antagonist SB269970. Thus, serotonin showed a dual action on PVH CRF neurons, by upregulating glutamatergic- and downregulating GABAergic interneurons; the former may partly be mediated by 5-HT7 receptors, whereas the latter by 5-HT2C receptors. The CRF-Venus ΔNeo mouse was useful for the electrophysiological examination.


Asunto(s)
Hormona Liberadora de Corticotropina , Serotonina , Ratones , Animales , Serotonina/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Transmisión Sináptica/fisiología , Neuronas/metabolismo , Hipotálamo/metabolismo
2.
Phys Rev E ; 96(1-1): 012701, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347082

RESUMEN

A mixture of two selenium-containing compounds, 80 wt. % AS657 and 20 wt. % AS620, are studied with two complementary methods, electric-field-induced birefringence (EFIB) and microbeam resonant x-ray scattering (µRXS). The mixture shows the typical phase sequence of Sm-C_{A}^{*}-1/3-1/2-Sm-C^{*}-Sm-C_{α}^{*}-Sm-A, where 1/3 and 1/2 are two prototypal ferrielectric and antiferroelectric subphases with three- and four-layer unit cells, respectively. Here we designate the subphase as its q_{T} number defined by the ratio of [F]/([F]+[A]), where [F] and [A] are the numbers of synclinic ferroelectric and anticlinic antiferroelectric orderings in the unit cell, respectively. The electric field vs temperature phase diagram with EFIB contours indicates the emergence of three additional subphases, an antiferroelectric one between Sm-C_{A}^{*} and 1/3 and antiferroelectric and apparently ferrielectric ones between 1/3 and 1/2. The simplest probable q_{T}'s for these additional subphases are 1/4, 2/5, and 3/7, respectively, in the order of increasing temperature. The µRXS profiles indicate that antiferroelectric 1/4 and 2/5 approximately have the eight-layer (FAAAFAAA) and ten-layer (FAFAAFAFAA) Ising unit cells, respectively. The remaining subphase may be ferrielectric 3/7 with a seven-layer unit cell, although the evidence is partial. These experimental results are compared with the phenomenological Landau model [P. V. Dolganov and E. I. Kats, Liq. Cryst. Rev. 1, 127 (2014)2168-039610.1080/21680396.2013.869667] and the quasimolecular model [A. V. Emelyanenko and M. A. Osipov, Phys. Rev. E 68, 051703 (2003)1063-651X10.1103/PhysRevE.68.051703].

3.
Sci Adv ; 2(8): e1501723, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27540587

RESUMEN

Corticotropin-releasing hormone (CRH), which is synthesized in the paraventricular nucleus (PVN) of the hypothalamus, plays an important role in the endocrine stress response. The excitability of CRH neurons is regulated by γ-aminobutyric acid (GABA)-containing neurons projecting to the PVN. We investigated the role of GABA in the regulation of CRH release. The release of CRH was impaired, accumulating in the cell bodies of CRH neurons in heterozygous GAD67-GFP (green fluorescent protein) knock-in mice (GAD67(+/GFP)), which exhibited decreased GABA content. The GABAA receptor (GABAAR) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), but not the K(+)-Cl(-) cotransporter (KCC2), were expressed in the terminals of the CRH neurons at the median eminence (ME). In contrast, CRH neuronal somata were enriched with KCC2 but not with NKCC1. Thus, intracellular Cl(-) concentrations ([Cl(-)]i) may be increased at the terminals of CRH neurons compared with concentrations in the cell body. Moreover, GABAergic terminals projecting from the arcuate nucleus were present in close proximity to CRH-positive nerve terminals. Furthermore, a GABAAR agonist increased the intracellular calcium (Ca(2+)) levels in the CRH neuron terminals but decreased the Ca(2+) levels in their somata. In addition, the increases in Ca(2+) concentrations were prevented by an NKCC1 inhibitor. We propose a novel mechanism by which the excitatory action of GABA maintains a steady-state CRH release from axon terminals in the ME.


Asunto(s)
Hormona Liberadora de Corticotropina/metabolismo , Receptores de GABA-A/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Simportadores/genética , Ácido gamma-Aminobutírico/metabolismo , Animales , Axones/metabolismo , Señalización del Calcio , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Hipotálamo/metabolismo , Eminencia Media/metabolismo , Ratones , Núcleo Hipotalámico Paraventricular/metabolismo , Receptores de GABA-A/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Simportadores/metabolismo , Cotransportadores de K Cl
4.
Neurosci Res ; 48(2): 211-20, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14741396

RESUMEN

A developmental change in GABA and glycine responses, from a depolarization to a hyperpolarization, have been reported for a range of CNS neurons, and has been demonstrated to be due to a developmental decrease in the intracellular Cl- concentration ([Cl-](i)). We examined [Cl-](i) in isolated rat lateral superior olive (LSO) neurons using patch-clamp recordings of glycine gated Cl- currents and by measuring intracellular Cl- -fluorescence. In neurons from 14-16-day-old rats (P14-P16), which had previously received unilateral or bilateral cochlear ablations before the onset of hearing, there was no developmental decrease in [Cl-](i). No significant differences in [Cl-](i) were observed amongst rats with either ipsi- and contralateral ablations. Implanted strychnine pellets also prevented the decrease in [Cl-](i) in most neurons. In some of these neurons in which [Cl-](i) remained high, there was a lack of expression of the K+-Cl- cotransporter 2 (KCC2) mRNA. These results demonstrate that the developmental decrease in [Cl-](i) in LSO neurons is dependent on neuronal activity and that both GABAergic/glycinergic and glutamatergic afferent activity contribute to this maturation of the Cl- regulatory mechanisms.


Asunto(s)
Cloruros/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Líquido Intracelular/metabolismo , Neuronas/metabolismo , Núcleo Olivar/metabolismo , Estimulación Acústica/métodos , Animales , Animales Recién Nacidos , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Núcleo Olivar/crecimiento & desarrollo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA