Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Cell ; 37(2): 465-477, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218753

RESUMEN

Lymphedema, resulting from impaired lymphatic drainage, causes inflammation, fibrosis and tissue damage leading to symptoms such as limb swelling and restricted mobility. Despite various treatments under exploration, no standard effective therapy exists. Here a novel technique using the pyro-drive jet injection (PJI) was used to create artificial clefts between collagen fibers, which facilitated the removal of excess interstitial fluid. The PJI was used to deliver a mixture of lactated Ringer's solution and air into the tail of animals with secondary skin edema. Edema levels were assessed using micro-CT scanning. Histopathological changes and neovascularization were evaluated on the injury-induced regenerative tissue. Regarding tissue remodeling, we focused on connective tissue growth factor (CTGF) and vascular endothelial growth factor (VEGF)-C. PJI markedly diminished soft tissue volume in the experimental lymphedema animals compared to the non-injected counterparts. The PJI groups exhibited a significantly reduced proportion of inflammatory granulation tissue and an enhanced density of lymphatic vessels and α-smooth muscle actin (αSMA)-positive small vessels in the fibrous granulation tissue compared to the controls. In addition, PJI curtailed the prevalence of CTGF- and VEGF-C-positive cells in regenerative tissue. In a lymphedema animal model, PJI notably ameliorated interstitial edema, promoted lymphatic vessel growth, and bolstered αSMA-positive capillaries in fibrous granulation tissue. PJI's minimal tissue impact post-lymph node dissection indicates significant potential as an early, standard preventative measure. Easily applied in general clinics without requiring specialized training, it offers a cost-effective and highly versatile solution to the management of lymphedema.


Asunto(s)
Vasos Linfáticos , Linfedema , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Linfedema/terapia , Linfedema/etiología , Linfedema/patología , Vasos Linfáticos/diagnóstico por imagen , Vasos Linfáticos/patología , Piel/metabolismo , Edema/complicaciones , Edema/metabolismo , Edema/patología
2.
J Clin Invest ; 133(14)2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37261917

RESUMEN

Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons - namely, glucose-inhibited (GI) neurons - paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.


Asunto(s)
Glucosa , Hipoglucemia , Animales , Ratones , Anoctaminas , Glucemia , Glucosa/farmacología , Hipoglucemia/genética , Hipotálamo/metabolismo , Neuronas/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo
3.
Cell Rep ; 37(10): 110075, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879284

RESUMEN

The neuroendocrine system coordinates metabolic and behavioral adaptations to fasting, including reducing energy expenditure, promoting counterregulation, and suppressing satiation and anxiety to engage refeeding. Here, we show that steroid receptor coactivator-2 (SRC-2) in pro-opiomelanocortin (POMC) neurons is a key regulator of all these responses to fasting. POMC-specific deletion of SRC-2 enhances the basal excitability of POMC neurons; mutant mice fail to efficiently suppress energy expenditure during food deprivation. SRC-2 deficiency blunts electric responses of POMC neurons to glucose fluctuations, causing impaired counterregulation. When food becomes available, these mutant mice show insufficient refeeding associated with enhanced satiation and discoordination of anxiety and food-seeking behavior. SRC-2 coactivates Forkhead box protein O1 (FoxO1) to suppress POMC gene expression. POMC-specific deletion of SRC-2 protects mice from weight gain induced by an obesogenic diet feeding and/or FoxO1 overexpression. Collectively, we identify SRC-2 as a key molecule that coordinates multifaceted adaptive responses to food shortage.


Asunto(s)
Metabolismo Energético , Ayuno/metabolismo , Conducta Alimentaria , Hipotálamo/metabolismo , Neuronas/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Obesidad/metabolismo , Hipernutrición/metabolismo , Proopiomelanocortina/metabolismo , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/psicología , Modelos Animales de Enfermedad , Ayuno/psicología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Células HEK293 , Humanos , Hipotálamo/fisiopatología , Masculino , Ratones Noqueados , Coactivador 2 del Receptor Nuclear/genética , Obesidad/genética , Obesidad/fisiopatología , Obesidad/psicología , Hipernutrición/genética , Hipernutrición/fisiopatología , Hipernutrición/psicología , Proopiomelanocortina/genética , Respuesta de Saciedad , Transducción de Señal , Aumento de Peso
4.
JCI Insight ; 6(11)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33974562

RESUMEN

The hypothalamus is a critical regulator of glucose metabolism and is capable of correcting diabetes conditions independently of an effect on energy balance. The small GTPase Rap1 in the forebrain is implicated in high-fat diet-induced (HFD-induced) obesity and glucose imbalance. Here, we report that increasing Rap1 activity selectively in the medial hypothalamus elevated blood glucose without increasing the body weight of HFD-fed mice. In contrast, decreasing hypothalamic Rap1 activity protected mice from diet-induced hyperglycemia but did not prevent weight gain. The remarkable glycemic effect of Rap1 was reproduced when Rap1 was specifically deleted in steroidogenic factor-1-positive (SF-1-positive) neurons in the ventromedial hypothalamic nucleus (VMH) known to regulate glucose metabolism. While having no effect on body weight regardless of sex, diet, and age, Rap1 deficiency in the VMH SF1 neurons markedly lowered blood glucose and insulin levels, improved glucose and insulin tolerance, and protected mice against HFD-induced neural leptin resistance and peripheral insulin resistance at the cellular and whole-body levels. Last, acute pharmacological inhibition of brain exchange protein directly activated by cAMP 2, a direct activator of Rap1, corrected glucose imbalance in obese mouse models. Our findings uncover the primary role of VMH Rap1 in glycemic control and implicate Rap1 signaling as a potential target for therapeutic intervention in diabetes.


Asunto(s)
Glucemia/metabolismo , Hiperglucemia/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Proteínas de Unión al GTP rap1/metabolismo , Animales , Dieta Alta en Grasa , Técnicas de Silenciamiento del Gen , Homeostasis , Hipotálamo/metabolismo , Resistencia a la Insulina , Leptina/metabolismo , Ratones , Factor Esteroidogénico 1/metabolismo , Proteínas de Unión al GTP rap1/genética
5.
Endocrinology ; 161(9)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32603429

RESUMEN

The hypothalamus plays a critical role in controlling energy balance. High-fat diet (HFD) feeding increases the gene expression of proinflammatory mediators and decreases insulin actions in the hypothalamus. Here, we show that a gut-derived hormone, glucose-dependent insulinotropic polypeptide (GIP), whose levels are elevated during diet-induced obesity, promotes and mediates hypothalamic inflammation and insulin resistance during HFD-induced obesity. Unbiased ribonucleic acid sequencing of GIP-stimulated hypothalami revealed that hypothalamic pathways most affected by intracerebroventricular (ICV) GIP stimulation were related to inflammatory-related responses. Subsequent analysis demonstrated that GIP administered either peripherally or centrally, increased proinflammatory-related factors such as Il-6 and Socs3 in the hypothalamus, but not in the cortex of C57BL/6J male mice. Consistently, hypothalamic activation of IκB kinase-ß inflammatory signaling was induced by ICV GIP. Further, hypothalamic levels of proinflammatory cytokines and Socs3 were significantly reduced by an antagonistic GIP receptor (GIPR) antibody and by GIPR deficiency. Additionally, centrally administered GIP reduced anorectic actions of insulin in the brain and diminished insulin-induced phosphorylation of Protein kinase B and Glycogen synthase kinase 3ß in the hypothalamus. Collectively, these findings reveal a previously unrecognized role for brain GIP signaling in diet-induced inflammation and insulin resistance in the hypothalamus.


Asunto(s)
Encefalitis/inducido químicamente , Polipéptido Inhibidor Gástrico/farmacología , Hipotálamo/efectos de los fármacos , Inflamación/inducido químicamente , Resistencia a la Insulina , Receptores de la Hormona Gastrointestinal/fisiología , Animales , Dieta Alta en Grasa , Encefalitis/genética , Polipéptido Inhibidor Gástrico/administración & dosificación , Polipéptido Inhibidor Gástrico/fisiología , Hipotálamo/inmunología , Hipotálamo/patología , Inflamación/genética , Infusiones Intraventriculares , Resistencia a la Insulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Receptores de la Hormona Gastrointestinal/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
6.
J Clin Invest ; 129(9): 3786-3791, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403469

RESUMEN

Nutrient excess, a major driver of obesity, diminishes hypothalamic responses to exogenously administered leptin, a critical hormone of energy balance. Here, we aimed to identify a physiological signal that arises from excess caloric intake and negatively controls hypothalamic leptin action. We found that deficiency of the gastric inhibitory polypeptide receptor (Gipr) for the gut-derived incretin hormone GIP protected against diet-induced neural leptin resistance. Furthermore, a centrally administered antibody that neutralizes GIPR had remarkable antiobesity effects in diet-induced obese mice, including reduced body weight and adiposity, and a decreased hypothalamic level of SOCS3, an inhibitor of leptin actions. In contrast, centrally administered GIP diminished hypothalamic sensitivity to leptin and increased hypothalamic levels of Socs3. Finally, we show that GIP increased the active form of the small GTPase Rap1 in the brain and that its activation was required for the central actions of GIP. Altogether, our results identify GIPR/Rap1 signaling in the brain as a molecular pathway linking overnutrition to the control of neural leptin actions.


Asunto(s)
Hipotálamo/metabolismo , Incretinas/metabolismo , Leptina/metabolismo , Obesidad/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rap1/metabolismo , Adiposidad/genética , Animales , Incretinas/genética , Leptina/genética , Ratones , Obesidad/genética , Receptores de la Hormona Gastrointestinal/genética , Receptores de la Hormona Gastrointestinal/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteínas de Unión al GTP rap1/genética
7.
Cell Metab ; 13(3): 331-9, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21356522

RESUMEN

Leptin regulates energy balance and glucose homeostasis. Shortly after leptin was identified, it was established that obesity is commonly associated with leptin resistance, though the molecular mechanisms remain to be identified. To explore potential mechanisms of leptin resistance, we employed organotypic brain slices to identify candidate signaling pathways that negatively regulate leptin sensitivity. We found that elevation of adenosine 3', 5'-monophosphate (cAMP) levels impairs multiple signaling cascades activated by leptin within the hypothalamus. Notably, this effect is independent of protein kinase A activation. In contrast, activation of Epac, a cAMP-regulated guanine nucleotide exchange factor for the small G protein Rap1, was sufficient to impair leptin signaling with concomitant induction of SOCS-3 expression. Epac activation also blunted leptin-induced depolarization of hypothalamic POMC neurons. Finally, central infusion of an Epac activator blunted the anorexigenic actions of leptin. Thus, activation of hypothalamic cAMP-Epac pathway is sufficient to induce multiple indices of leptin resistance.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Leptina/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipotálamo/citología , Hipotálamo/metabolismo , Ratones , Neuronas/metabolismo , Fosforilación , Receptores de Leptina/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
8.
Nat Neurosci ; 13(12): 1457-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21037584

RESUMEN

Mice lacking 5-HT 2C receptors (5-HT(2C)Rs) displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT(2C)Rs only in pro-opiomelanocortin (POMC) neurons. 5-HT(2C)R deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT(2C)R agonist); these effects were restored when 5-HT(2C)Rs were re-expressed in POMC neurons. Our findings indicate that 5-HT(2C)Rs expressed by POMC neurons are physiologically relevant regulators of insulin sensitivity and glucose homeostasis in the liver.


Asunto(s)
Regulación de la Expresión Génica , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/biosíntesis , Receptor de Serotonina 5-HT2C/biosíntesis , Animales , Tronco Encefálico/metabolismo , Glucosa/metabolismo , Homeostasis/fisiología , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/fisiología , Proopiomelanocortina/fisiología , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/fisiología
9.
Endocrinology ; 151(11): 5415-27, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20881244

RESUMEN

Studies have indicated that the neurotransmitter nitric oxide (NO) mediates leptin's effects in the neuroendocrine reproductive axis. However, the neurons involved in these effects and their regulation by leptin is still unknown. We aimed to determine whether NO neurons are direct targets of leptin and by which mechanisms leptin may influence neuronal NO synthase (nNOS) activity. Nicotinamide adenine dinucleotide phosphate diaphorase activity and leptin-induced phosphorylation of signal transducer and activator of transcription-3 immunoreactivity were coexpressed in subsets of neurons of the medial preoptic area, the paraventricular nucleus of the thalamus, the arcuate nucleus (Arc), the dorsomedial nucleus of the hypothalamus (DMH), the posterior hypothalamic area, the ventral premammillary nucleus (PMV), the parabrachial nucleus, and the dorsal motor nucleus of the vagus nerve. Fasting blunted nNOS mRNA expression in the medial preoptic area, Arc, DMH, PMV, and posterior hypothalamic area, and this effect was not restored by acute leptin administration. No difference in the number of neurons expressing nNOS immunoreactivity was noticed comparing hypothalamic sections of fed (wild type and ob/ob), fasted, and fasted leptin-treated mice. However, we found that in states of low leptin levels, as in fasting, or lack of leptin, as in ob/ob mice, the number of neurons expressing the phosphorylated form of nNOS is decreased in the Arc, DMH, and PMV. Notably, acute leptin administration to fasted wild-type mice restored the number of phosphorylated form of nNOS neurons to that observed in fed wild-type mice. Herein we identified the first-order neurons potentially involved in NO-mediated effects of leptin and demonstrate that leptin regulates nNOS activity predominantly through posttranslational mechanisms.


Asunto(s)
Hipotálamo/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fosforilación/efectos de los fármacos , Análisis de Varianza , Animales , Ayuno/metabolismo , Femenino , Hipotálamo/efectos de los fármacos , Inmunohistoquímica , Hibridación in Situ , Leptina/farmacología , Ratones , Neuronas/efectos de los fármacos , Fosforilación/fisiología
10.
Cell Metab ; 11(4): 286-97, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20374961

RESUMEN

Circulating leptin and insulin convey information regarding energy stores to the central nervous system, particularly the hypothalamus. Hypothalamic pro-opiomelanocortin (POMC) neurons regulate energy balance and glucose homeostasis and express leptin and insulin receptors. However, the physiological significance of concomitant leptin and insulin action on POMC neurons remains to be established. Here, we show that mice lacking both leptin and insulin receptors in POMC neurons (Pomc-Cre, Lepr(flox/flox) IR(flox/flox) mice) display systemic insulin resistance, which is distinct from the single deletion of either receptor. In addition, Pomc-Cre, Lepr(flox/flox) IR(flox/flox) female mice display elevated serum testosterone levels and ovarian abnormalities, resulting in reduced fertility. We conclude that direct action of insulin and leptin on POMC neurons is required to maintain normal glucose homeostasis and reproductive function.


Asunto(s)
Glucemia/metabolismo , Fertilidad/fisiología , Homeostasis/fisiología , Hipotálamo/metabolismo , Resistencia a la Insulina/fisiología , Insulina/metabolismo , Leptina/metabolismo , Neuronas/metabolismo , Análisis de Varianza , Animales , Femenino , Hipotálamo/citología , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Proopiomelanocortina/metabolismo , Testosterona/sangre
11.
J Neurosci ; 28(50): 13640-8, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19074037

RESUMEN

The PI3K-Akt-FoxO1 pathway contributes to the actions of insulin and leptin in several cell types, including neurons in the CNS. However, identifying these actions in chemically identified neurons has proven difficult. To address this problem, we have developed a reporter mouse for monitoring PI3K-Akt signaling in specific populations of neurons, based on FoxO1 nucleocytoplasmic shuttling. The reporter, FoxO1 fused to green fluorescent protein (FoxO1GFP), is expressed under the control of a ubiquitous promoter that is silenced by a loxP flanked transcriptional blocker. Thus, the expression of the reporter in selected cells is dependent on the action of Cre recombinase. Using this model, we found that insulin treatment resulted in the nuclear exclusion of FoxO1GFP within POMC and AgRP neurons in a dose- and time-dependent manner. FoxO1GFP nuclear exclusion was also observed in POMC neurons following in vivo administration of insulin. In addition, leptin induced transient nuclear export of FoxO1GFP in POMC neurons in a dose dependent manner. Finally, insulin-induced nuclear export was impaired in POMC neurons by pretreatment with free fatty acids, a paradigm known to induce insulin resistance in peripheral insulin target tissues. Thus, our FoxO1GFP mouse provides a tool for monitoring the status of PI3K-Akt signaling in a cell-specific manner under physiological and pathophysiological conditions.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Ácidos Grasos no Esterificados/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Hipotálamo/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Insulina/metabolismo , Leptina/metabolismo , Ratones , Técnicas de Cultivo de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA