Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomedicine (Lond) ; 18(23): 1681-1696, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37955573

RESUMEN

The use of nanocarriers in medicine, so-called nanomedicine, is one of the most innovative strategies for targeting drugs at the action site and increasing their activity index and effectiveness. Phytomedicine is the oldest traditional method used to treat human diseases and solve health problems. The recent literature on the treatment of malaria infections using nanodelivery systems and phytodrugs or supplements has been analyzed. For the first time, in the present review, a careful look at the considerable potential of nanomedicine in promoting phytotherapeutic efficacy was done, and its key role in addressing a translation through a significant reduction of the current burden of malaria in many parts of the world has been underlined.


Plants hide an incredible treasure chest of beneficial substances within them. These natural substances have a wide range of beneficial applications for human health, from nutrition to personal care, including the treatment of diseases such as malaria. However, to exploit the full potential of these substances, an innovative approach is needed, and nanomedicine promises that. Nanomedicine involves the use of nanosystems, incredibly small systems, invisible to the naked eye, but their impact is enormous. Thus, bioactive compounds in plants that may have beneficial effects on human health can be placed within these nanosystems to improve their effectiveness. This synergy between nature and nanotechnology offers new opportunities to improve health and well-being, demonstrating how valuable science and technology are in exploring the natural world. After examining the key advantages of nanosystems, this review focuses on some of the earliest antimalarials used and then looks at newer and more promising ones, starting with quinine, extracted from Cinchona bark; moving to the discovery of artemisinin, obtained from Artemisia annua and its derivatives; and ending with an analysis of alternative natural molecules with antimalarial activity. This review examines how nanomedicine can make natural plant-based treatments more effective in fighting malaria. This could help reduce the impact of malaria in many places around the world.


Asunto(s)
Malaria , Nanomedicina , Humanos , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Malaria/tratamiento farmacológico
2.
Int J Pharm ; 634: 122650, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36716832

RESUMEN

The Echium amoenum Fisch. and C.A. Mey. (E. amoenum) is an herb native from Iranian shrub, and its blue-violet flowers are traditionally used as medical plants. In the present study, an antioxidant phytocomplex was extracted from the flowers of E. amoenum by ultrasounds-assisted hydroalcoholic maceration. The main components, contained in the extract, have been detected using HPLC-DAD, and rosmarinic acid was found to be the most abundant. The antioxidant power of the extract along with the phenolic content were measured using colorimetric assays. The extract was loaded in liposomes, which were enriched adding different bioadhesive polymers (i.e., mucin, xanthan gum and carboxymethyl cellulose sodium salt) individually or in combination. The main physico-chemical properties (i.e. size, size distribution, surface charge) of the prepared vesicles were measured as well as their stability on storage. The viscosity of dispersion and the ability of vesicles to interact with mucus were evaluated measuring their stability in a mucin dispersion and mobility in a mucin film. The biocompatibility and the ability of the formulations to protect keratinocytes from damages caused by hydrogen peroxide and to promote the cell migration were measured in vitro.


Asunto(s)
Echium , Extractos Vegetales , Extractos Vegetales/química , Echium/química , Antioxidantes , Fosfolípidos , Irán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA