Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328326

RESUMEN

For over a century, the role of the preoptic hypothalamus and adjacent basal forebrain in sleep-wake regulation has been recognized. However, for years, the identity and location of sleep- and wake-promoting neurons in this region remained largely unresolved. Twenty-five years ago, Saper and colleagues uncovered a small collection of sleep-active neurons in the ventrolateral preoptic nucleus (VLPO) of the preoptic hypothalamus, and since this seminal discovery the VLPO has been intensively investigated by labs around the world, including our own. Herein, we first review the history of the preoptic area, with an emphasis on the VLPO in sleep-wake control. We then attempt to synthesize our current understanding of the circuit, cellular and synaptic bases by which the VLPO both regulates and is itself regulated, in order to exert a powerful control over behavioral state, as well as examining data suggesting an involvement of the VLPO in other physiological processes.


Asunto(s)
Área Preóptica , Sueño , Hipotálamo , Aprendizaje , Neuronas/fisiología , Sueño/fisiología
2.
Diabetologia ; 64(11): 2575-2588, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34430981

RESUMEN

AIMS/HYPOTHESIS: Hypothalamic inflammation and sympathetic nervous system hyperactivity are hallmark features of the metabolic syndrome and type 2 diabetes. Hypothalamic inflammation may aggravate metabolic and immunological pathologies due to extensive sympathetic activation of peripheral tissues. Loss of somatostatinergic (SST) neurons may contribute to enhanced hypothalamic inflammation. METHODS: The present data show that leptin receptor-deficient (db/db) mice exhibit reduced hypothalamic SST neurons, particularly in the periventricular nucleus. We model this finding, using adeno-associated virus delivery of diphtheria toxin subunit A (DTA) driven by an SST-cre system to deplete these neurons in Sstcre/gfp mice (SST-DTA). RESULTS: SST-DTA mice exhibit enhanced hypothalamic c-Fos expression and brain inflammation as demonstrated by microglial and astrocytic activation. Bone marrow from SST-DTA mice undergoes skewed haematopoiesis, generating excess granulocyte-monocyte progenitors and increased proinflammatory (C-C chemokine receptor type 2; CCR2hi) monocytes. SST-DTA mice exhibited a 'diabetic retinopathy-like' phenotype: reduced visual function by optokinetic response (0.4 vs 0.25 cycles/degree; SST-DTA vs control mice); delayed electroretinogram oscillatory potentials; and increased percentages of retinal monocytes. Finally, mesenteric visceral adipose tissue from SST-DTA mice was resistant to catecholamine-induced lipolysis, displaying 50% reduction in isoprenaline (isoproterenol)-induced lipolysis compared with control littermates. Importantly, hyperglycaemia was not observed in SST-DTA mice. CONCLUSIONS/INTERPRETATION: The isolated reduction in hypothalamic SST neurons was able to recapitulate several hallmark features of type 2 diabetes in disease-relevant tissues.


Asunto(s)
Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Retina/metabolismo , Somatostatina/metabolismo , Animales , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Toxina Diftérica/toxicidad , Electrorretinografía , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
Curr Biol ; 29(24): 4155-4168.e5, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31761703

RESUMEN

Among the neuronal populations implicated in sleep-wake control, the ventrolateral preoptic (VLPO) nucleus has emerged as a key sleep-promoting center. However, the synaptic drives that regulate the VLPO to control arousal levels in vivo have not to date been identified. Here, we show that sleep-promoting galaninergic neurons within the VLPO nucleus, defined pharmacologically and by single-cell transcript analysis, are postsynaptic targets of lateral hypothalamic GABAergic (LHGABA) neurons and that activation of this pathway in vivo rapidly drives wakefulness. Ca2+ imaging from LHGABA neurons indicate that they are both wake and rapid eye movement (REM)-sleep active. Consistent with the potent arousal-promoting property of the LHGABA → VLPO pathway, presynaptic inputs to LHGABA neurons originate from several canonical stress- and arousal-related network nodes. This work represents the first demonstration that direct synaptic inhibition of the VLPO area can suppress sleep-promoting neurons to rapidly promote arousal.


Asunto(s)
Área Preóptica/metabolismo , Sueño/fisiología , Vigilia/fisiología , Animales , Nivel de Alerta/fisiología , Encéfalo/fisiología , Electroencefalografía/métodos , Femenino , Neuronas GABAérgicas/metabolismo , Área Hipotalámica Lateral/fisiología , Hipotálamo/fisiología , Masculino , Ratones , Neuronas/fisiología , Área Preóptica/fisiología , Trastornos del Sueño del Ritmo Circadiano/fisiopatología
4.
Curr Biol ; 28(14): 2291-2301.e5, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30017482

RESUMEN

Stress elicits a variety of autonomic responses, including hyperthermia (stress fever) in humans and animals. In this present study, we investigated the circuit basis for thermogenesis and heat conservation during this response. We first demonstrated the glutamatergic identity of the dorsal hypothalamic area (DHAVglut2) neurons that innervate the raphe pallidus nucleus (RPa) to regulate core temperature (Tc) and mediate stress-induced hyperthermia. Then, using chemogenetic and optogenetic methods to manipulate this hypothalamomedullary circuit, we found that activation of DHAVglut2 neurons potently drove an increase in Tc, but surprisingly, stress-induced hyperthermia was only reduced by about one-third when they were inhibited. Further investigation showed that DHAVglut2 neurons activate brown adipose tissue (BAT) but do not cause vasoconstriction, instead allowing reflex tail artery vasodilation as a response to BAT-induced hyperthermia. Retrograde rabies virus tracing revealed projections from DHAVglut2 neurons to RPaVglut3, but not to RPaGABA neurons, and identified a set of inputs to DHAVglut2 → RPa neurons that are likely to mediate BAT activation. The dissociation of the DHAVglut2 thermogenic pathway from the thermoregulatory vasoconstriction (heat-conserving) pathway may explain stress flushing (skin vasodilation but a feeling of being too hot) during stressful times.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Fiebre/fisiopatología , Hipotálamo/metabolismo , Neuronas/fisiología , Termogénesis , Animales , Femenino , Masculino , Ratones , Núcleo Pálido del Rafe/fisiología , Optogenética , Estrés Fisiológico
5.
Nat Neurosci ; 21(5): 717-724, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632359

RESUMEN

'Sundowning' in dementia and Alzheimer's disease is characterized by early-evening agitation and aggression. While such periodicity suggests a circadian origin, whether the circadian clock directly regulates aggressive behavior is unknown. We demonstrate that a daily rhythm in aggression propensity in male mice is gated by GABAergic subparaventricular zone (SPZGABA) neurons, the major postsynaptic targets of the central circadian clock, the suprachiasmatic nucleus. Optogenetic mapping revealed that SPZGABA neurons receive input from vasoactive intestinal polypeptide suprachiasmatic nucleus neurons and innervate neurons in the ventrolateral part of the ventromedial hypothalamus (VMH), which is known to regulate aggression. Additionally, VMH-projecting dorsal SPZ neurons are more active during early day than early night, and acute chemogenetic inhibition of SPZGABA transmission phase-dependently increases aggression. Finally, SPZGABA-recipient central VMH neurons directly innervate ventrolateral VMH neurons, and activation of this intra-VMH circuit drove attack behavior. Altogether, we reveal a functional polysynaptic circuit by which the suprachiasmatic nucleus clock regulates aggression.


Asunto(s)
Agresión/fisiología , Ritmo Circadiano/fisiología , Hipotálamo/fisiología , Vías Nerviosas/fisiología , Animales , Mapeo Encefálico , Corticosterona/sangre , Potenciales Postsinápticos Excitadores/fisiología , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Optogenética , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiología , Núcleo Supraquiasmático/fisiología , Péptido Intestinal Vasoactivo/fisiología , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/fisiología , Ácido gamma-Aminobutírico/fisiología
6.
Neuron ; 96(5): 1153-1167.e5, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29103805

RESUMEN

The precise neural circuitry that mediates arousal during sleep apnea is not known. We previously found that glutamatergic neurons in the external lateral parabrachial nucleus (PBel) play a critical role in arousal to elevated CO2 or hypoxia. Because many of the PBel neurons that respond to CO2 express calcitonin gene-related peptide (CGRP), we hypothesized that CGRP may provide a molecular identifier of the CO2 arousal circuit. Here, we report that selective chemogenetic and optogenetic activation of PBelCGRP neurons caused wakefulness, whereas optogenetic inhibition of PBelCGRP neurons prevented arousal to CO2, but not to an acoustic tone or shaking. Optogenetic inhibition of PBelCGRP terminals identified a network of forebrain sites under the control of a PBelCGRP switch that is necessary to arouse animals from hypercapnia. Our findings define a novel cellular target for interventions that may prevent sleep fragmentation and the attendant cardiovascular and cognitive consequences seen in obstructive sleep apnea. VIDEO ABSTRACT.


Asunto(s)
Nivel de Alerta/genética , Hipercapnia/genética , Hipercapnia/fisiopatología , Sueño/genética , Estimulación Acústica , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Electroencefalografía , Electromiografía , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiopatología , Neuronas , Optogenética , Técnicas de Placa-Clamp , Prosencéfalo/fisiopatología , Respiración , Síndromes de la Apnea del Sueño/fisiopatología
7.
Eur J Neurosci ; 41(1): 97-108, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25354166

RESUMEN

Genetically targeted approaches that permit acute and reversible manipulation of neuronal circuit activity have enabled an unprecedented understanding of how discrete neuronal circuits control animal behavior. Zebra finch singing behavior has emerged as an excellent model for studying neuronal circuit mechanisms underlying the generation and learning of behavioral motor sequences. We employed a newly developed, reversible, neuronal silencing system in zebra finches to test the hypothesis that ensembles of neurons in the robust nucleus of the arcopallium (RA) control the acoustic structure of specific song parts, but not the timing nor the order of song elements. Subunits of an ivermectin-gated chloride channel were expressed in a subset of RA neurons, and ligand administration consistently suppressed neuronal excitability. Suppression of activity in a group of RA neurons caused the birds to sing songs with degraded elements, although the order of song elements was unaffected. Furthermore some syllables disappeared in the middle or at the end of song motifs. Thus, our data suggest that generation of specific song parts is controlled by a subset of RA neurons, whereas elements order coordination and timing of whole songs are controlled by a higher premotor area.


Asunto(s)
Pinzones/fisiología , Corteza Motora/fisiopatología , Neuronas/fisiología , Vocalización Animal/fisiología , Potenciales de Acción/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Dependovirus/genética , Silenciador del Gen , Vectores Genéticos , Ivermectina/farmacología , Masculino , Corteza Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Espectrografía del Sonido , Técnicas de Cultivo de Tejidos , Transfección , Vocalización Animal/efectos de los fármacos
8.
J Neurosci ; 33(18): 7627-40, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637157

RESUMEN

The mechanisms of arousal from apneas during sleep in patients suffering from obstructive sleep apnea are not well understood. However, we know that respiratory chemosensory pathways converge on the parabrachial nucleus (PB), which sends glutamatergic projections to a variety of forebrain structures critical to arousal, including the basal forebrain, lateral hypothalamus, midline thalamus, and cerebral cortex. We tested the role of glutamatergic signaling in this pathway by developing an animal model for repetitive CO2 arousals (RCAs) and investigating the effect of deleting the gene for the vesicular glutamate transporter 2 (Vglut2) from neurons in the PB. We used mice with lox P sequences flanking exon2 of the Vglut2 gene, in which adeno-associated viral vectors containing genes encoding Cre recombinase and green fluorescent protein were microinjected into the PB to permanently and selectively disrupt Vglut2 expression while labeling the affected neurons. We recorded sleep in these mice and then investigated the arousals during RCA. Vglut2 deletions that included the external lateral and lateral crescent subdivisions of the lateral PB more than doubled the latency to arousal and resulted in failure to arouse by 30 s in >30% of trials. By contrast, deletions that involved the medial PB subdivision had minimal effects on arousal during hypercapnia but instead increased non-rapid eye movement (NREM) sleep by ∼43% during the dark period, and increased delta power in the EEG during NREM sleep by ∼50%. Our results suggest that glutamatergic neurons in the lateral PB are necessary for arousals from sleep in response to CO2, while medial PB glutamatergic neurons play an important role in promoting spontaneous waking.


Asunto(s)
Nivel de Alerta , Tronco Encefálico/fisiología , Ácido Glutámico/metabolismo , Hipercapnia/fisiopatología , Transducción de Señal/fisiología , Estimulación Acústica , Análisis de Varianza , Animales , Toxina Diftérica/farmacología , Electroencefalografía , Electromiografía , Movimientos Oculares/fisiología , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pletismografía , Tiempo de Reacción/fisiología , Sueño/fisiología , Factores de Tiempo , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia , Proteína 2 de Transporte Vesicular de Glutamato/genética
9.
J Comp Neurol ; 519(5): 933-56, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21280045

RESUMEN

The "ascending reticular activating system" theory proposed that neurons in the upper brainstem reticular formation projected to forebrain targets that promoted wakefulness. More recent formulations have emphasized that most neurons at the pontomesencephalic junction that participate in these pathways are actually in monoaminergic and cholinergic cell groups. However, cell-specific lesions of these cell groups have never been able to reproduce the deep coma seen after acute paramedian midbrain lesions that transect ascending axons at the caudal midbrain level. To determine whether the cortical afferents from the thalamus or the basal forebrain were more important in maintaining arousal, we first placed large cell-body-specific lesions in these targets. Surprisingly, extensive thalamic lesions had little effect on electroencephalographic (EEG) or behavioral measures of wakefulness or on c-Fos expression by cortical neurons during wakefulness. In contrast, animals with large basal forebrain lesions were behaviorally unresponsive and had a monotonous sub-1-Hz EEG, and little cortical c-Fos expression during continuous gentle handling. We then retrogradely labeled inputs to the basal forebrain from the upper brainstem, and found a substantial input from glutamatergic neurons in the parabrachial nucleus and adjacent precoeruleus area. Cell-specific lesions of the parabrachial-precoeruleus complex produced behavioral unresponsiveness, a monotonous sub-1-Hz cortical EEG, and loss of cortical c-Fos expression during gentle handling. These experiments indicate that in rats the reticulo-thalamo-cortical pathway may play a very limited role in behavioral or electrocortical arousal, whereas the projection from the parabrachial nucleus and precoeruleus region, relayed by the basal forebrain to the cerebral cortex, may be critical for this process.


Asunto(s)
Nivel de Alerta/fisiología , Vías Nerviosas/anatomía & histología , Prosencéfalo/anatomía & histología , Prosencéfalo/fisiología , Animales , Conducta Animal/fisiología , Electroencefalografía , Electromiografía , Agonistas de Aminoácidos Excitadores/farmacología , Humanos , Ácido Iboténico/farmacología , Masculino , Vías Nerviosas/patología , Vías Nerviosas/fisiología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Sueño/fisiología , Tálamo/anatomía & histología , Tálamo/efectos de los fármacos , Tálamo/patología , Tálamo/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Vigilia/fisiología
10.
Brain Res ; 1245: 96-107, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18840417

RESUMEN

Although opioids are known to influence sleep-wake regulation, the neuroanatomic substrate(s) mediating these effects remain unresolved. We hypothesized that the influence of opiates on sleep may be mediated, at least in part, by the ventrolateral preoptic nucleus (VLPO), a key cell group for producing behavioral sleep. By combining in situ hybridization for kappa and mu receptor mRNA with immunostaining of Fos expressed by VLPO cells during sleep we show that >85% of sleep-active VLPO neurons contain mRNA for either or both opioid receptors. Microinfusions of a kappa receptor agonist into the VLPO region increased NREM sleep by 51% during the subjective night, whereas a mu receptor agonist increased wakefulness by 60% during the subjective day. The sleep- and wake-promoting effects of the kappa and mu agonists were blocked by prior administration of their respective antagonist. Combining retrograde tracing from the VLPO with immunohistochemistry for dynorphin (Dyn, the endogenous kappa receptor agonist) or endomorphin 1 (EM1, the endogenous mu receptor agonist) we show that the central lateral parabrachial subnucleus (PBcl) provides Dyn inputs to the VLPO, whereas hypothalamic histaminergic neurons provide EM1 inputs to the VLPO. In summary, results from the present study suggest that central opioid inputs to the VLPO may play a role in sleep-wake regulation and that the VLPO likely mediates the hypnotic response to high levels of opioid analgesics.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas/metabolismo , Receptores Opioides/genética , Sueño/fisiología , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacología , Animales , Dinorfinas/administración & dosificación , Dinorfinas/metabolismo , Dinorfinas/farmacología , Electroencefalografía , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inmunohistoquímica , Hibridación in Situ , Masculino , Antagonistas de Narcóticos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neurotransmisores/administración & dosificación , Neurotransmisores/metabolismo , Neurotransmisores/farmacología , Oligopéptidos/administración & dosificación , Oligopéptidos/metabolismo , Oligopéptidos/farmacología , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Opioides/agonistas , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides kappa/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Vigilia/fisiología
11.
Proc Natl Acad Sci U S A ; 99(24): 15723-8, 2002 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-12434016

RESUMEN

Chronic exposure to increased force environments (+G) has pronounced effects on the circadian and homeostatic regulation of body temperature (T(b)), ambulatory activity (Act), heart rate, feeding, and adiposity. By using the Brn 3.1 knockout mouse, which lacks vestibular hair cells, we recently described a major role of the vestibular system in mediating some of these adaptive responses. The present study used the C57BL6JEi-het mouse strain (het), which lacks macular otoconia, to elucidate the contribution of specific vestibular receptors. In this study, eight het and eight WT mice were exposed to 2G for 8 weeks by means of chronic centrifugation. In addition, eight het and eight WT mice were maintained as 1G controls in similar conditions. Upon 2G exposure, the WT exhibited a decrease in T(b) and an attenuated T(b) circadian rhythm. Act means and rhythms also were attenuated. Body mass and food intake were significantly lower than the 1G controls. After 8 weeks, percent body fat was significantly lower in the WT mice (P < 0.0001). In contrast, the het mice did not exhibit a decrease in mean T(b) and only a slight decrease in T(b) circadian amplitude. het Act levels were attenuated similarly to the WT mice. Body mass and food intake were only slightly attenuated in the het mice, and percent body fat, after 8 weeks, was not different in the 2G het group. These results link the vestibular macular receptors with specific alterations in homeostatic and circadian regulation.


Asunto(s)
Aceleración , Ritmo Circadiano/fisiología , Células Ciliadas Vestibulares/fisiología , Homeostasis/fisiología , Hipergravedad , Hipotálamo/fisiología , Vestíbulo del Laberinto/fisiología , Tejido Adiposo , Animales , Composición Corporal , Regulación de la Temperatura Corporal , Peso Corporal , Centrifugación , Conducta Alimentaria , Células Ciliadas Vestibulares/anomalías , Frecuencia Cardíaca , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Sáculo y Utrículo/anomalías , Simulación del Espacio , Telemetría , Vestíbulo del Laberinto/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA