Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Virus Res ; 344: 199359, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38521505

RESUMEN

The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections. In this study, a comprehensive approach involving pharmacophore-based inhibitor screening, coupled with biochemical and biophysical analyses, were implemented to identify, characterize, and validate potential inhibitors targeting AsfvPolX. The constructed pharmacophore model, Phar-PolX-S, demonstrated efficacy in identifying a potent inhibitor, D-132 (IC50 = 2.8 ± 0.2 µM), disrupting the formation of the AsfvPolX-DNA complex. Notably, D-132 exhibited strong binding to AsfvPolX (KD = 6.9 ± 2.2 µM) through a slow-on-fast-off binding mechanism. Employing molecular modeling, it was elucidated that D-132 predominantly binds in-between the palm and finger domains of AsfvPolX, with crucial residues (R42, N48, Q98, E100, F102, and F116) identified as hotspots for structure-based inhibitor optimization. Distinctively characterized by a 1,2,5,6-tetrathiocane with modifications at the 3 and 8 positions involving ethanesulfonates, D-132 holds considerable promise as a lead compound for the development of innovative agents to combat ASFV infections.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , ADN Polimerasa Dirigida por ADN , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/química , Animales , Antivirales/farmacología , Antivirales/química , Fiebre Porcina Africana/virología , Porcinos , Descubrimiento de Drogas , Replicación Viral/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Unión Proteica , Simulación del Acoplamiento Molecular , ADN Viral/genética , Farmacóforo
2.
Food Funct ; 13(24): 12632-12647, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36416361

RESUMEN

Alzheimer's disease (AD) is the leading cause of disabilities in old age and a rapidly growing condition in the elderly population. AD brings significant burden and has a devastating impact on public health, society and the global economy. Thus, developing new therapeutics to combat AD is imperative. Human glutaminyl cyclase (hQC), which catalyzes the formation of neurotoxic pyroglutamate (pE)-modified ß-amyloid (Aß) peptides, is linked to the amyloidogenic process that leads to the initiation of AD. Hence, hQC is an essential target for developing anti-AD therapeutics. Here, we systematically screened and identified hQC inhibitors from natural products by pharmacophore-driven inhibitor screening coupled with biochemical and biophysical examinations. We employed receptor-ligand pharmacophore generation to build pharmacophore models and Phar-MERGE and Phar-SEN for inhibitor screening through ligand-pharmacophore mapping. About 11 and 24 hits identified from the Natural Product and Traditional Chinese Medicine databases, respectively, showed diverse hQC inhibitory abilities. Importantly, the inhibitors TCM1 (Azaleatin; IC50 = 1.1 µM) and TCM2 (Quercetin; IC50 = 4.3 µM) found in foods and plants exhibited strong inhibitory potency against hQC. Furthermore, the binding affinity and molecular interactions were analyzed by surface plasmon resonance (SPR) and molecular modeling/simulations to explore the possible modes of action of Azaleatin and Quercetin. Our study successfully screened and characterized the foundational biochemical and biophysical properties of Azaleatin and Quercetin toward targeting hQC, unveiling their bioactive potential in the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Aminoaciltransferasas , Inhibidores Enzimáticos , Anciano , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Farmacóforo , Quercetina/aislamiento & purificación , Quercetina/farmacología , Aminoaciltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
3.
RSC Adv ; 11(4): 2453-2461, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35424194

RESUMEN

The cytosolic non-receptor protein kinase, spleen tyrosine kinase (SYK), is an attractive drug target in autoimmune, inflammatory disorder, and cancers indications. Here, we employed pharmacophore-based drug screening combined with biochemical assay and molecular dynamics (MD) simulations to identify and characterize inhibitors targeting SYK. The built pharmacophore model, phar-TanI, successfully identified tanshinone (TanI (IC50 = 1.72 µM)) and its analogs (TanIIA (IC50 = 3.2 µM), ST32da (IC50 = 46 µM), and ST32db (IC50 = 51 µM)) which apparently attenuated the activities of SYK in vitro. Additionally, the MD simulations followed by Ligplot analyses revealed that TanI and TanIIA interfered SYK activity through binding deeply into the active site. Besides, TanI and TanIIA mainly interact with residues L377, A400, V433, M448, M450, A451, E452, L453, G454, P455, and L501, which are functional hotspots for structure-based inhibitor optimization against SYK. The structure-activity relationships (SAR) study of the identified SYK inhibitors demonstrated that the pharmacophore model, phar-TanI is reliable and precise in screening inhibitors against SYK. This study disclosed the structure-function relationships of tanshinones from Traditional Chinese Medicine (Danshen), revealing their binding site and mode of action in inhibiting SYK and provides applicability in developing new therapeutic agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA