Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pharm Pharmacol ; 75(8): 1034-1045, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37402616

RESUMEN

OBJECTIVES: Madecassoside (MAD) is a triterpenoid constituent of Centella asiatica (L.) Urb., an ethnomedical tropical plant, extracts of which were shown to reduce blood glucose in experimental diabetes. This study examines MAD for its anti-hyperglycaemic effects and tests the hypothesis that it reduces the blood glucose in experimentally induced diabetic rats by protecting the ß-cells. METHODS: Diabetes was induced using streptozotocin (60 mg/kg, i.v.) followed by nicotinamide (210 mg/kg, intraperitoneal (i.p.)). MAD (50 mg/kg) was administered orally for 4 weeks, commencing 15 days after induction of diabetes; resveratrol (10 mg/kg) was used as a positive control. Fasting blood glucose, plasma insulin, HbA1c, liver and lipid parameters were measured, along with antioxidant enzymes and malondialdehyde as an index of lipid peroxidation; histological and immunohistochemical studies were also undertaken. KEY FINDINGS: MAD normalized the elevated fasting blood glucose levels. This was associated with increased plasma insulin concentrations. MAD alleviated oxidative stress by improving enzymatic antioxidants and reducing lipid peroxidation. Histopathological examination showed significant recovery of islet structural degeneration and an increased area of islets. Immunohistochemical staining showed increased insulin content in islets of MAD-treated rats. CONCLUSIONS: The results demonstrate an antidiabetic effect of MAD associated with preservation of ß-cell structure and function.


Asunto(s)
Diabetes Mellitus Experimental , Insulinas , Triterpenos , Ratas , Animales , Glucemia , Niacinamida/farmacología , Estreptozocina/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Wistar , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Triterpenos/farmacología , Hipoglucemiantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Insulinas/farmacología
2.
J Ethnopharmacol ; 247: 112264, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31600561

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The global problem of diabetes, together with the limited access of large numbers of patients to conventional antidiabetic medicines, continues to drive the search for new agents. Ancient Asian systems such as traditional Chinese medicine, Japanese Kampo medicine, and Indian Ayurvedic medicine, as well as African traditional medicine and many others have identified numerous plants reported anecdotally to treat diabetes; there are probably more than 800 such plants for which there is scientific evidence for their activity, mostly from studies using various models of diabetes in experimental animals. AIM OF THE REVIEW: Rather than a comprehensive coverage of the literature, this article aims to identify discrepancies between findings in animal and human studies, and to highlight some of the problems in developing plant extract-based medicines that lower blood glucose in patients with diabetes, as well as to suggest potential ways forward. METHODS: In addition to searching the 2018 PubMed literature using the terms 'extract AND blood glucose, a search of the whole literature was conducted using the terms 'plant extracts' AND 'blood glucose' AND 'diabetes' AND 'double blind' with 'clinical trials' as a filter. A third search using PubMed and Medline was undertaken for systematic reviews and meta-analyses investigating the effects of plant extracts on blood glucose/glycosylated haemoglobin in patients with relevant metabolic pathologies. FINDINGS: Despite numerous animal studies demonstrating the effects of plant extracts on blood glucose, few randomised, double-blind, placebo-controlled trials have been conducted to confirm efficacy in treating humans with diabetes; there have been only a small number of systematic reviews with meta-analyses of clinical studies. Qualitative and quantitative discrepancies between animal and human clinical studies in some cases were marked; the factors contributing to this included variations in the products among different studies, the doses used, differences between animal models and the human disease, and the impact of concomitant therapy in patients, as well as differences in the duration of treatment, and the fact that treatment in animals may begin before or very soon after the induction of diabetes. CONCLUSION: The potential afforded by natural products has not yet been realised in the context of treating diabetes mellitus. A systematic, coordinated, international effort is required to achieve the goal of providing anti-diabetic treatments derived from medicinal plants.


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Medicina Tradicional/métodos , Extractos Vegetales/farmacología , Animales , Diabetes Mellitus Tipo 2/sangre , Modelos Animales de Enfermedad , Etnofarmacología , Humanos , Hipoglucemiantes/uso terapéutico , Metaanálisis como Asunto , Extractos Vegetales/uso terapéutico , Plantas Medicinales/química , Ensayos Clínicos Controlados Aleatorios como Asunto , Especificidad de la Especie , Revisiones Sistemáticas como Asunto , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA