RESUMEN
We previously described that the intake of pharmacological doses of beta-carotene (BC) resulted in higher body weight gain in the ferret (Mustela putorius furo), an animal model that resembles human subjects in terms of intestinal BC absorption and metabolism. These results were some way unexpected considering the condition of BC as a vitamin A precursor and the previous data in rodents showing these compounds as thermogenic activators. Here, we aimed to characterise in the ferret whether the mentioned changes in body weight could be explained by changes in adipose tissue thermogenic capacity. We studied the effects of 6-month supplementation with BC (0.8 and 3.2 mg/kg per d) on adipose tissue morphology and uncoupling protein-1 (UCP1) content. BC supplementation resulted in higher body weight (the high dose), induced depot- and dose-dependent hypertrophy of white adipocytes, decreased the amount of brown-like multilocular adipocytes in the retroperitoneal depot and decreased UCP1 content in different fat depots. To ascertain whether BC effects could be mediated by retinoic acid (RA), 1 week supplementation with RA (0.25 and 25 mg/kg per d) was also studied. RA treatment resulted in a slight decrease in adiposity, decreased cell lipid accumulation and increased UCP1 content, suggesting that the effects of BC on thermogenic capacity are not through RA. In conclusion, RA, but not BC, may have in the ferret comparable effects with those described in rodents, whereas differences concerning BC and RA treatments may be attributable to the different BC metabolism in the present animal model with a lower conversion of BC to RA compared with rodents.
Asunto(s)
Tejido Adiposo/efectos de los fármacos , Suplementos Dietéticos , Termogénesis/efectos de los fármacos , beta Caroteno/farmacología , Tejido Adiposo/anatomía & histología , Tejido Adiposo/fisiología , Adiposidad/efectos de los fármacos , Adiposidad/fisiología , Animales , Relación Dosis-Respuesta a Droga , Femenino , Hurones , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Animales , Termogénesis/fisiología , Tretinoina/administración & dosificación , Tretinoina/farmacología , Proteína Desacopladora 1 , Aumento de Peso/efectos de los fármacos , Aumento de Peso/fisiología , beta Caroteno/administración & dosificaciónRESUMEN
Epidemiological studies have demonstrated that people who eat more fruits and vegetables (rich in carotenoids) and people who have higher serum beta-carotene (BC) levels have a lower risk of cancer, particularly lung cancer. However, the two main human intervention studies of BC supplementation (the ATBC and the CARET trials) revealed an increased risk of lung cancer among smokers and asbestos workers. Previous studies carried out in the ferret have reported that BC effects are related to dose. Here, we treated ferrets with two concentrations of oral BC (0.8 and 3.2 mg/kg body weight per day) for 6 months, using BC in a formulation also containing dl-alpha-tocopherol and ascorbyl palmitate. The effect of the smoke-derived carcinogenic agent benzo[a]pyrene (BP), with or without low-dose BC, was also analysed. We determined the protein levels and mRNA expression levels of activator protein 1 (c-Jun and c-Fos), c-Myc, cyclin D1, proliferating cellular nuclear antigen and retinoic acid receptor beta. We did not find higher levels of cell proliferation markers in the lung of ferrets treated with BC or signals of squamous metaplasia lesions either. On the other hand, although no evident signals of pulmonary carcinogenesis were observed in animals exposed to BP, BC supplementation in these animals may prevent against excess cell proliferation, since this reestablishes Jun protein and cyclin D1 mRNA levels in the lung of BP-exposed animals. In summary, these results show that the combination of BC with alpha-tocopherol and ascorbyl palmitate does not induce pro-oxidant effects in the lung of ferrets.
Asunto(s)
Benzo(a)pireno/toxicidad , Ciclo Celular/efectos de los fármacos , Suplementos Dietéticos , Hurones/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/efectos de los fármacos , Mutágenos/toxicidad , beta Caroteno/farmacología , Animales , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacología , Biomarcadores/análisis , Femenino , Pulmón/metabolismo , Pulmón/patología , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Distribución Aleatoria , Factores de Tiempo , alfa-Tocoferol/administración & dosificación , alfa-Tocoferol/farmacología , beta Caroteno/administración & dosificaciónRESUMEN
Adipose tissue is an important retinoid depot and retinoids are known to influence white and brown adipocyte metabolism. Identifying nutrients that can affect the biological activity of the adipose organ would be of great medical interest in the light of the current obesity epidemic and related disorders in developed countries. The vast majority of mammal studies of chronic administration of oral beta-carotene have used murine models, while few have employed mammals exhibiting uptake and processing of intestinal beta-carotene similar to those of humans. While rodents transform practically all ingested beta-carotene into retinol, in ferrets, as in humans, part of the beta-carotene is absorbed and released into the circulation intact. We studied the effects of 6-month daily administration of two doses of oral beta-carotene (0.8 or 3.2 mg/kg/day) on ferret body weight, size of body fat depots, and, using morphological and morphometric methods, on subcutaneous (inguinal) white adipose tissue (WAT). Because of the oral mode of administration, liver, stomach, and small and large intestine were also studied. Control animals received the vehicle. Data show that at the end of treatment the higher dose induced significantly higher body weight compared with controls and significantly higher inguinal fat depot compared with animals treated with the lower dose. In addition, chronic treatment with beta-carotene induced a dose-dependent hypertrophy of white adipocytes and increased neoangiogenesis in subcutaneous WAT in all treated ferrets. Vasculogenesis was independent of adipocyte hypertrophy. We also found focally evident liver steatosis in the ferrets treated with the higher dose of beta-carotene. The other gastrointestinal tract organs studied were not significantly different from those of control animals.