RESUMEN
Coronafacoyl phytotoxins are secondary metabolites that are produced by various phytopathogenic bacteria, including several pathovars of the Gram-negative bacterium Pseudomonas syringae as well as the Gram-positive potato scab pathogen Streptomyces scabies. The phytotoxins are composed of the polyketide coronafacic acid (CFA) linked via an amide bond to amino acids or amino acid derivatives, and their biosynthesis involves the cfa and cfa-like gene clusters that are found in P. syringae and S. scabies, respectively. The S. scabies cfa-like gene cluster was previously reported to contain several genes that are absent from the P. syringae cfa gene cluster, including one (oxr) encoding a putative F420 -dependent oxidoreductase, and another (sdr) encoding a predicted short-chain dehydrogenase/reductase. Using gene deletion analysis, we demonstrated that both oxr and sdr are required for normal production of the S. scabies coronafacoyl phytotoxins, and structural analysis of metabolites that accumulated in the Δsdr mutant cultures revealed that Sdr is directly involved in the biosynthesis of the CFA moiety. Our results suggest that S. scabies and P. syringae use distinct biosynthetic pathways for producing coronafacoyl phytotoxins, which are important mediators of host-pathogen interactions in various plant pathosystems.
Asunto(s)
Ácido Graso Sintasas/metabolismo , Indenos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Streptomyces/metabolismo , Aminoácidos/metabolismo , Vías Biosintéticas , Ácido Graso Sintasas/genética , Eliminación de Gen , Genes Bacterianos , Interacciones Huésped-Patógeno , Familia de Multigenes , NADH NADPH Oxidorreductasas/genética , Enfermedades de las Plantas/microbiología , Homología de Secuencia de Aminoácido , Solanum tuberosum/microbiología , Streptomyces/enzimología , Streptomyces/genéticaRESUMEN
Potato common scab (CS) is an economically important crop disease that is caused by several members of the genus Streptomyces. In this study, we characterized the plant-pathogenic Streptomyces spp. associated with CS-infected potato tubers harvested in Newfoundland, Canada. A total of 17 pathogenic Streptomyces isolates were recovered from potato scab lesions, of which eight were determined to be most similar to the known CS pathogen S. europaeiscabiei. All eight S. europaeiscabiei isolates were found to produce the thaxtomin A phytotoxin and to harbor the nec1 virulence gene, and most also carry the putative virulence gene tomA. The remaining isolates appear to be novel pathogenic species that do not produce thaxtomin A, and only two of these isolates were determined to harbor the nec1 or tomA genes. Of the non-thaxtomin-producing isolates, strain 11-1-2 was shown to exhibit a severe pathogenic phenotype against different plant hosts and to produce a novel, secreted phytotoxic substance. This is the first report documenting the plant-pathogenic Streptomyces spp. associated with CS disease in Newfoundland. Furthermore, our findings provide further evidence that phytotoxins other than thaxtomin A may also contribute to the development of CS by Streptomyces spp.
Asunto(s)
Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/aislamiento & purificación , Proteínas Bacterianas/genética , Secuencia de Bases , Genotipo , Indoles/metabolismo , Datos de Secuencia Molecular , Terranova y Labrador , Fenotipo , Filogenia , Piperazinas/metabolismo , Hojas de la Planta/microbiología , Tubérculos de la Planta/microbiología , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , Eliminación de Secuencia , Streptomyces/genética , Streptomyces/patogenicidad , Streptomyces/fisiología , VirulenciaRESUMEN
Streptomyces scabies is the main causative agent of common scab disease, which leads to significant annual losses to potato growers worldwide. The main virulence factor produced by S. scabies is a phytotoxic secondary metabolite called thaxtomin A, which functions as a cellulose synthesis inhibitor. Thaxtomin A production is controlled by the cluster-situated regulator TxtR, which activates expression of the thaxtomin biosynthetic genes in response to cello-oligosaccharides. Here, we demonstrate that at least five additional regulatory genes are required for wild-type levels of thaxtomin A production and plant pathogenicity in S. scabies. These regulatory genes belong to the bld gene family of global regulators that control secondary metabolism or morphological differentiation in Streptomyces spp. Quantitative reverse-transcriptase polymerase chain reaction showed that expression of the thaxtomin biosynthetic genes was significantly downregulated in all five bld mutants and, in four of these mutants, this downregulation was attributed to the reduction in expression of txtR. Furthermore, all of the mutants displayed reduced expression of other known or predicted virulence genes, suggesting that the bld genes may function as global regulators of virulence gene expression in S. scabies.
Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Indoles/metabolismo , Piperazinas/metabolismo , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Regulación hacia Abajo , Eliminación de Gen , Prueba de Complementación Genética , Indoles/análisis , Familia de Multigenes , Fenotipo , Piperazinas/análisis , Raphanus/microbiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Plantones/microbiología , Streptomyces/patogenicidad , Streptomyces/fisiología , VirulenciaRESUMEN
Summary Streptomyces scabies is one of a group of organisms that causes the economically important disease potato scab. Analysis of the S. scabies genome sequence indicates that it is likely to secrete many proteins via the twin arginine protein transport (Tat) pathway, including several proteins whose coding sequences may have been acquired through horizontal gene transfer and share a common ancestor with proteins in other plant pathogens. Inactivation of the S. scabies Tat pathway resulted in pleiotropic phenotypes including slower growth rate and increased permeability of the cell envelope. Comparison of the extracellular proteome of the wild type and DeltatatC strains identified 73 predicted secretory proteins that were present in reduced amounts in the tatC mutant strain, and 47 Tat substrates were verified using a Tat reporter assay. The DeltatatC strain was almost completely avirulent on Arabidopsis seedlings and was delayed in attaching to the root tip relative to the wild-type strain. Genes encoding 14 candidate Tat substrates were individually inactivated, and seven of these mutants were reduced in virulence compared with the wild-type strain. We conclude that the Tat pathway secretes multiple proteins that are required for full virulence.