Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 202: 107976, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37625253

RESUMEN

Selenium (Se) hyperaccumulators are capable of uptake and tolerate high Se dosages. Excess Se-induced oxidative responses were compared in Astragalus bisulcatus and Astragalus cicer. Plants were grown on media supplemented with 0, 25 or 75 µM selenate for 14 days. Both A. bisulcatus and A. cicer accumulated >2000 µg/g dry weight Se to the shoot but the translocation factors of A. cicer were below 1 suggesting its non hyperaccumulator nature. A. cicer showed Se sensitivity indicated by reduced seedling fresh weight, root growth and root apical meristem viability, altered element homeostasis in the presence of Se. In Se-exposed A. bisulcatus, less toxic organic Se forms (mainly MetSeCys, γ-Glu-MetSeCys, and a selenosugar) dominated, while these were absent from A. cicer suggesting that the majority of the accumulated Se may be present as inorganic forms. The glutathione-dependent processes were more affected, while ascorbate levels were not notably influenced by Se in either species. Exogenous Se triggered more intense accumulation of malondialdehyde in the sensitive A. cicer compared with the tolerant A. bisulcatus. The extent of protein carbonylation in the roots of the 75 µM Se-exposed A. cicer exceeded that of A. bisulcatus indicating a correlation between selenate sensitivity and the degree of protein carbonylation. Overall, our results reveal connection between oxidative processes and Se sensitivity/tolerance/hyperaccumulation and contribute to the understanding of the molecular responses to excess Se.


Asunto(s)
Cicer , Selenio , Selenio/farmacología , Ácido Selénico , Radioisótopos de Selenio , Carbonilación Proteica
2.
J Sci Food Agric ; 97(6): 1717-1724, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27435261

RESUMEN

BACKGROUND: Inhalation of manganese-containing metal fumes at workplaces can cause central nervous damage including a Parkinson-like syndrome. Oxidative stress is likely to be involved in the pathomechanism, due to the presence of nano-sized metal oxide particles with high biological and chemical activity. Oxidative damage of the nervous system could be prevented or ameliorated by properly applied antioxidants, preferably natural ones such as green tea, a popular drink. The aim of this work was to see if orally applied green tea brew could diminish the functional neurotoxicity of manganese dioxide nanoparticles introduced into the airways of rats. RESULTS: Young adult male Wistar rats were treated intratracheally for 6 weeks with a suspension of synthetic MnO2 nanoparticles (4 mg/kg body weight), and received green tea brew (1 g leaves 200 mL-1 water) as drinking fluid. Reduced body weight gain, indicating general toxicity of the nanoparticles, was not influenced by green tea. However, in rats receiving green tea the nervous system effects - changes in the spontaneous and evoked cortical activity and peripheral nerve action potential - were diminished. CONCLUSION: The use of green tea as a neuroprotective functional drink seems to be a viable approach. © 2016 Society of Chemical Industry.


Asunto(s)
Enfermedades del Sistema Nervioso Central/prevención & control , Nanopartículas/toxicidad , Sistema Nervioso/efectos de los fármacos , Óxidos/toxicidad , Extractos Vegetales/metabolismo , Té/metabolismo , Animales , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/metabolismo , Humanos , Masculino , Compuestos de Manganeso , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Ratas , Ratas Wistar , Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA