Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Front Toxicol ; 5: 1116707, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342468

RESUMEN

The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.

2.
Environ Res ; 204(Pt A): 111984, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34492275

RESUMEN

Exposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.


Asunto(s)
Contaminantes Ocupacionales del Aire , Exposición Profesional , Contaminantes Ocupacionales del Aire/análisis , Monitoreo Biológico , Cromatos , Cromo/análisis , Estudios Transversales , Monitoreo del Ambiente , Humanos , Exposición Profesional/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-34948743

RESUMEN

The Vasilikos Energy Center (VEC) is a large hydrocarbon industrial hub actively operating in Cyprus. There is strong public interest by the communities surrounding VEC to engage with all stakeholders towards the sustainable development of hydrocarbon in the region. The methodological framework of the exposome concept would allow for the holistic identification of all relevant environmental exposures by engaging the most relevant stakeholders in industrially contaminated sites. The main objectives of this study were to: (i) evaluate the stakeholders' perceptions of the environmental and public health risks and recommended actions associated with the VEC hydrocarbon activities, and (ii) assess the stakeholders' understanding and interest towards exposome-based technologies for use in oil and gas applications. Methods: Six major groups of stakeholders were identified: local authorities, small-medium industries (SMIs) (including multi-national companies), small-medium enterprises (SMEs), academia/professional associations, government, and the general public residing in the communities surrounding the VEC. During 2019-2021, a suite of stakeholder engagement initiatives was deployed, including semi-structured interviews (n = 32), a community survey for the general public (n = 309), technical meetings, and workshops (n = 4). Results from the semi-structured interviews, technical meetings and workshops were analyzed through thematic analysis and results from the community survey were analyzed using descriptive statistics. Results: Almost all stakeholders expressed the need for the implementation of a systematic health monitoring system for the VEC broader area and its surrounding residential communities, including frequent measurements of air pollutant emissions. Moreover, stricter policies by the government about licensing and monitoring of hydrocarbon activities and proper communication to the public and the mass media emerged as important needs. The exposome concept was not practiced by the SMEs, but SMIs showed willingness to use it in the future as part of their research and development activities. Conclusions: The sustainable development of hydrocarbon exploitation and processing prospects for Cyprus involves the VEC. Continuous and active collaboration and mutual feedback among all stakeholders involved with the VEC is essential, as this may allow future environmental and occupational health initiatives to be formalized.


Asunto(s)
Salud Pública , Participación de los Interesados , Chipre , Exposición a Riesgos Ambientales , Hidrocarburos
4.
Artículo en Inglés | MEDLINE | ID: mdl-29891786

RESUMEN

Endocrine disruptors (EDs) belong to large and diverse groups of agents that may cause multiple biological effects associated with, for example, hormone imbalance and infertility, chronic diseases such as diabetes, genome damage and cancer. The health risks related with the exposure to EDs are typically underestimated, less well characterized, and not regulated to the same extent as, for example, carcinogens. The increased production and utilization of identified or suspected EDs in many different technological processes raises new challenges with respect to occupational exposure settings and associated health risks. Due to the specific profile of health risk, occupational exposure to EDs demands a new paradigm in health risk assessment, redefinition of exposure assessment, new effects biomarkers for occupational health surveillance and definition of limit values. The construction and plastics industries are among the strongest economic sectors, employing millions of workers globally. They also use large quantities of chemicals that are known or suspected EDs. Focusing on these two industries, this short communication discusses: (a) why occupational exposure to EDs needs a more specific approach to occupational health risk assessments, (b) identifies the current knowledge gaps, and


Asunto(s)
Industria de la Construcción , Disruptores Endocrinos/efectos adversos , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/efectos adversos , Salud Laboral , Plásticos/efectos adversos , Disruptores Endocrinos/análisis , Humanos , Enfermedades Profesionales/prevención & control , Exposición Profesional/análisis , Plásticos/análisis , Medición de Riesgo/métodos
5.
Ann Work Expo Health ; 62(6): 733-741, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29788378

RESUMEN

Crude oil may cause adverse dermal effects therefore dermal exposure is an exposure route of concern. Galea et al. (2014b) reported on a study comparing recovery (wipe) and interception (cotton glove) dermal sampling methods. The authors concluded that both methods were suitable for assessing dermal exposure to oil-based drilling fluids and crude oil but that glove samplers may overestimate the amount of fluid transferred to the skin. We describe a study which aimed to further evaluate the wipe sampling method to assess dermal exposure to crude oil, with this assessment including extended sample storage periods and sampling efficiency tests being undertaken at environmental conditions to mimic those typical of outdoor conditions in Saudi Arabia. The wipe sampling method was then used to assess the laboratory technicians' actual exposure to crude oil during typical petroleum laboratory tasks. Overall, acceptable storage efficiencies up to 54 days were reported with results suggesting storage stability over time. Sampling efficiencies were also reported to be satisfactory at both ambient and elevated temperature and relative humidity environmental conditions for surrogate skin spiked with known masses of crude oil and left up to 4 h prior to wiping, though there was an indication of reduced sampling efficiency over time. Nineteen petroleum laboratory technicians provided a total of 35 pre- and 35 post-activity paired hand wipe samples. Ninety-three percent of the pre-exposure paired hand wipes were less than the analytical limit of detection (LOD), whereas 46% of the post-activity paired hand wipes were less than the LOD. The geometric mean paired post-activity wipe sample measurement was 3.09 µg cm-2 (range 1.76-35.4 µg cm-2). It was considered that dermal exposure most frequently occurred through direct contact with the crude oil (emission) or via deposition. The findings of this study suggest that the wipe sampling method is satisfactory in quantifying laboratory technicians' dermal exposure to crude oil. It is therefore considered that this wipe sampling method may be suitable to quantify dermal exposure to crude oil for other petroleum workers.


Asunto(s)
Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Petróleo/análisis , Cromatografía de Gases y Espectrometría de Masas , Guantes Protectores , Mano , Humanos , Personal de Laboratorio , Arabia Saudita , Piel , Absorción Cutánea
6.
Ann Occup Hyg ; 58(5): 591-600, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24598941

RESUMEN

Dermal exposure to drilling fluids and crude oil is an exposure route of concern. However, there have been no published studies describing sampling methods or reporting dermal exposure measurements. We describe a study that aimed to evaluate a wipe sampling method to assess dermal exposure to an oil-based drilling fluid and crude oil, as well as to investigate the feasibility of using an interception cotton glove sampler for exposure on the hands/wrists. A direct comparison of the wipe and interception methods was also completed using pigs' trotters as a surrogate for human skin and a direct surface contact exposure scenario. Overall, acceptable recovery and sampling efficiencies were reported for both methods, and both methods had satisfactory storage stability at 1 and 7 days, although there appeared to be some loss over 14 days. The methods' comparison study revealed significantly higher removal of both fluids from the metal surface with the glove samples compared with the wipe samples (on average 2.5 times higher). Both evaluated sampling methods were found to be suitable for assessing dermal exposure to oil-based drilling fluids and crude oil; however, the comparison study clearly illustrates that glove samplers may overestimate the amount of fluid transferred to the skin. Further comparison of the two dermal sampling methods using additional exposure situations such as immersion or deposition, as well as a field evaluation, is warranted to confirm their appropriateness and suitability in the working environment.


Asunto(s)
Monitoreo del Ambiente/métodos , Industria Procesadora y de Extracción , Aceites Industriales/análisis , Exposición Profesional/análisis , Petróleo/análisis , Piel/química , Análisis de Varianza , Animales , Aceites Combustibles/análisis , Humanos , Porcinos
7.
Ann Occup Hyg ; 55(4): 347-56, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21248050

RESUMEN

Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Industria Procesadora y de Extracción , Exposición Profesional/análisis , Petróleo/análisis , Contaminantes Ocupacionales del Aire/química , Monitoreo del Ambiente , Humanos , Temperatura , Compuestos Orgánicos Volátiles/análisis , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA