Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 31(6): 2952-2967, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33511976

RESUMEN

It is well established that movement planning recruits motor-related cortical brain areas in preparation for the forthcoming action. Given that an integral component to the control of action is the processing of sensory information throughout movement, we predicted that movement planning might also modulate early sensory cortical areas, readying them for sensory processing during the unfolding action. To test this hypothesis, we performed 2 human functional magnetic resonance imaging studies involving separate delayed movement tasks and focused on premovement neural activity in early auditory cortex, given the area's direct connections to the motor system and evidence that it is modulated by motor cortex during movement in rodents. We show that effector-specific information (i.e., movements of the left vs. right hand in Experiment 1 and movements of the hand vs. eye in Experiment 2) can be decoded, well before movement, from neural activity in early auditory cortex. We find that this motor-related information is encoded in a separate subregion of auditory cortex than sensory-related information and is present even when movements are cued visually instead of auditorily. These findings suggest that action planning, in addition to preparing the motor system for movement, involves selectively modulating primary sensory areas based on the intended action.


Asunto(s)
Estimulación Acústica/métodos , Anticipación Psicológica/fisiología , Corteza Auditiva/diagnóstico por imagen , Corteza Auditiva/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Adulto Joven
2.
J Neurosci ; 37(48): 11572-11591, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29066555

RESUMEN

The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay.SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it.


Asunto(s)
Sensibilidad de Contraste/fisiología , Oscuridad , Fóvea Central/fisiología , Reconocimiento Visual de Modelos/fisiología , Percepción del Tacto/fisiología , Corteza Visual/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Tacto/fisiología , Adulto Joven
3.
J Neurosci ; 29(14): 4381-91, 2009 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-19357266

RESUMEN

Macaque neurophysiology and human neuropsychology results suggest that parietal cortex encodes a unique representation of space within reach of the arm. Here, we used slow event-related functional magnetic resonance imaging (fMRI) to investigate whether human brain areas involved in reaching are more activated by objects within reach versus beyond reach. In experiment 1, graspable objects were placed at three possible locations on a platform: two reachable locations and one beyond reach. On some trials, participants reached to touch or grasp objects at the reachable location; on other trials participants passively viewed objects at one of the three locations. A reach-related area in the superior parieto-occipital cortex (SPOC) was more activated for targets within reach than beyond. In experiment 2, we investigated whether this SPOC response occurred when visual and motor confounds were controlled and whether it was modulated when a tool extended the effective range of the arm. On some trials, participants performed grasping and reaching actions to a reachable object location using either the hand alone or a tool; on other trials, participants passively viewed reachable and unreachable object locations. SPOC was significantly more active for passively viewed objects within reach of the hand versus beyond reach, regardless of whether or not a tool was available. Interestingly, these findings suggest that neural responses within brain areas coding actions (such as SPOC for reaching) may reflect automatic processing of motor affordances (such as reachability with the hand).


Asunto(s)
Fuerza de la Mano/fisiología , Mano/fisiología , Imagen por Resonancia Magnética , Lóbulo Occipital/fisiología , Lóbulo Parietal/fisiología , Estimulación Acústica/métodos , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Estimulación Luminosa/métodos , Desempeño Psicomotor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA