Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32879632

RESUMEN

This study aimed at investigating the cytoprotective effect of an ethyl acetate extract of insect fungi against high glucose- (HG-) induced oxidative damage in human umbilical vein endothelial cells (HUVECs). An insect fungus strain termed CH180672 (CH) was found for protecting HUVECs from HG-induced damage. In this study, CH was identified as Simplicillium sp. based on a phylogenetic analysis of ITS-rDNA sequences. Ethyl acetate extract (EtOAc) of this strain (CH) was subjected to the following experiments. Cell viability was examined with the MTT method. To evaluate the protection of CH, intracellular reactive oxygen species (ROS), malondialdehyde (MDA) levels, and the activities of antioxidant enzymes were measured and the expression of oxidation-associated proteins was assessed. In the current study, it has been found that CH can increase the survival rate of HUVECs induced by HG. Additionally, we found that HG-induced nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) signal decreased and increased the intracellular ROS and MDA generation in HUVECs. However, CH treatment strongly promoted the translocation of Nrf2 and its transregulation on HO-1 and ultimately inhibited the high level of ROS and MDA induced by HG. The regulatory ability of CH was similar to Nrf2 agonist bardoxolone, while the effect was abolished by ML385, suggesting that Nrf2 mediated the inhibition of CH on HG-induced oxidative stress in HUVECs. Taken together, CH can improve HG-induced oxidative damage of HUVECs, and its mechanism may be related to the regulation of the Nrf2/HO-1 pathway.

2.
Sci Rep ; 10(1): 6427, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286474

RESUMEN

Diabetic cardiomyopathy (DCM) is the principal cause of death in people with diabetes. However, there is currently no effective strategy to prevent the development of DCM. Although cyclovirobuxine D (CVB-D) has been widely used to treat multiple cardiovascular diseases, the possible beneficial effects of CVB-D on DCM remained unknown. The present aim was to explore the potential effects and underlying mechanisms of CVB-D on DCM. We explored the effects of CVB-D in DCM by using high fat high sucrose diet and streptozotocin-induced rat DCM model. Cardiac function and survival in rats with DCM were improved via the amelioration of oxidative damage after CVB-D treatment. Our data also demonstrated that pre-treatment with CVB-D exerted a remarkable cytoprotective effect against high glucose -or H2O2 -induced neonatal rat cardiomyocyte damage via the suppression of reactive oxygen species accumulation and restoration of mitochondrial membrane potential; this effect was associated with promotion of Nrf2 nuclear translocation and its downstream antioxidative stress signals (NQO-1, Prdx1). Overall, the present data has provided the first evidence that CVB-D has potential therapeutic in DCM, mainly by activation of the Nrf2 signalling pathway to suppress oxidative stress. Our findings also have positive implications on the novel promising clinical applications of CVB-D.


Asunto(s)
Antioxidantes/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Animales Recién Nacidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Femenino , Glucosa/toxicidad , Pruebas de Función Cardíaca , Peróxido de Hidrógeno/toxicidad , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas Sprague-Dawley
3.
Chin Med ; 15: 4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31938037

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) involves extensive retinal damage and is one of the most common and serious complications of diabetes mellitus. Hyperglycemia is the major pathological trigger for diabetic complications. Müller cell gliosis, a key pathophysiological process in DR, could finally lead to vision loss. Our previous finding revealed that the essential oil of Fructus Alpiniae zerumbet (EOFAZ) protects human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced injury via the PPAR-γ signal. However, Whether EOFAZ could prevent HG-induced Müller cell gliosis through the PPAR signaling remains unclear. METHODS: The neuroprotective effects of EOFAZ were evaluated in HG-treated rat retinal Müller cells (RMCs) and DR rat model. RESULT: GFAP and VEGF upregulation is the biomarker of Müller glial reactivity gliosis. Results suggested that EOFAZ could remarkably ameliorate retinal reactive gliosis by suppressing p-CREB and GFAP and VEGF downstream effectors. Its effects on PPAR-γ, a major target for currently available anti-diabetes drugs, were also investigated. EOFAZ treatment remarkably attenuated the reduction of PPAR-γ and high level of p-CaMK II and p-CREB in HG-treated RMCs and diabetic rats. Furthermore, the activation and ectopic expression of PPAR-γ downregulated p-CREB and p-CaMK II in HG-treated RMCs. By contrast, CaMK II inhibitor KN93 and CREB gene silencing did not significantly affect the PPAR-γ expression. CONCLUSIONS: A novel PPAR-γ-p-CREB signaling pathway accounts for the inhibitory effect of EOFAZ on RMCs gliosis. These findings provide scientific evidence for the potential use of EOFAZ as a complementary and alternative medicine for DR prevention and treatment in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA