Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Anal Bioanal Chem ; 416(11): 2783-2796, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38057634

RESUMEN

Innate immune systems alter the concentrations of trace elements in host niches in response to invading pathogens during infection. This work reports the interplay between d-block metal ions and their associated biomolecules using hyphenated elemental techniques to spatially quantify both elemental distributions and the abundance of specific transport proteins. Here, lung tissues were collected for analyses from naïve and Streptococcus pneumoniae-infected mice fed on a zinc-restricted or zinc-supplemented diet. Spatiotemporal distributions of manganese (55Mn), iron (56Fe), copper (63Cu), and zinc (66Zn) were determined by quantitative laser ablation-inductively coupled plasma-mass spectrometry. The murine transport proteins ZIP8 and ZIP14, which are associated with zinc transport, were also imaged by incorporation of immunohistochemistry techniques into the analytical workflow. Collectively, this work demonstrates the potential of a single instrumental platform suitable for multiplex analyses of tissues and labelled antibodies to investigate complex elemental interactions at the host-pathogen interface. Further, these methods have the potential for broad application to investigations of biological pathways where concomitant measurement of elements and biomolecules is crucial to understand the basis of disease and aid in development of new therapeutic approaches.


Asunto(s)
Infecciones Bacterianas , Oligoelementos , Ratones , Animales , Proteínas Portadoras , Espectrometría de Masas/métodos , Oligoelementos/análisis , Zinc/análisis , Cobre/análisis
2.
Brain Behav Immun ; 116: 349-361, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142918

RESUMEN

Maternal immune activation (MIA) during pregnancy increases the risk for the unborn foetus to develop neurodevelopmental conditions such as autism spectrum disorder and schizophrenia later in life. MIA mouse models recapitulate behavioural and biological phenotypes relevant to both conditions, and are valuable models to test novel treatment approaches. Selenium (Se) has potent anti-inflammatory properties suggesting it may be an effective prophylactic treatment against MIA. The aim of this study was to determine if Se supplementation during pregnancy can prevent adverse effects of MIA on offspring brain and behaviour in a mouse model. Selenium was administered via drinking water (1.5 ppm) to pregnant dams from gestational day (GD) 9 to birth, and MIA was induced at GD17 using polyinosinic:polycytidylic acid (poly-I:C, 20 mg/kg via intraperitoneal injection). Foetal placenta and brain cytokine levels were assessed using a Luminex assay and brain elemental nutrients assessed using inductively coupled plasma- mass spectrometry. Adult offspring were behaviourally assessed using a reinforcement learning paradigm, the three-chamber sociability test and the open field test. MIA elevated placental IL-1ß and IL-17, and Se supplementation successfully prevented this elevation. MIA caused an increase in foetal brain calcium, which was prevented by Se supplement. MIA caused in offspring a female-specific reduction in sociability, which was recovered by Se, and a male-specific reduction in social memory, which was not recovered by Se. Exposure to poly-I:C or selenium, but not both, reduced performance in the reinforcement learning task. Computational modelling indicated that this was predominantly due to increased exploratory behaviour, rather than reduced rate of learning the location of the food reward. This study demonstrates that while Se may be beneficial in ameliorating sociability deficits caused by MIA, it may have negative effects in other behavioural domains. Caution in the use of Se supplementation during pregnancy is therefore warranted.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Selenio , Ratones , Animales , Femenino , Embarazo , Masculino , Humanos , Conducta Animal/fisiología , Selenio/farmacología , Placenta , Modelos Animales de Enfermedad , Poli I-C/farmacología , Suplementos Dietéticos
3.
Cell Death Differ ; 29(11): 2123-2136, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35449212

RESUMEN

Mutations in presenilin 1 and 2 (PS1 and PS2) cause autosomal dominant familial Alzheimer's disease (FAD). Ferroptosis has been implicated as a mechanism of neurodegeneration in AD since neocortical iron burden predicts Alzheimer's disease (AD) progression. We found that loss of the presenilins dramatically sensitizes multiple cell types to ferroptosis, but not apoptosis. FAD causal mutations of presenilins similarly sensitizes cells to ferroptosis. The presenilins promote the expression of GPX4, the selenoprotein checkpoint enzyme that blocks ferroptosis by quenching the membrane propagation of lethal hydroperoxyl radicals. Presenilin γ-secretase activity cleaves Notch-1 to signal LRP8 expression, which then controls GPX4 expression by regulating the supply of selenium into the cell since LRP8 is the uptake receptor for selenoprotein P. Selenium uptake is thus disrupted by presenilin FAD mutations, suppressing GPX4 expression. Therefore, presenilin mutations may promote neurodegeneration by derepressing ferroptosis, which has implications for disease-modifying therapeutics.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Selenio , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ferroptosis/genética , Mutación/genética , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilinas/metabolismo
4.
Cell Metab ; 34(3): 408-423.e8, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35120590

RESUMEN

Although the neurogenesis-enhancing effects of exercise have been extensively studied, the molecular mechanisms underlying this response remain unclear. Here, we propose that this is mediated by the exercise-induced systemic release of the antioxidant selenium transport protein, selenoprotein P (SEPP1). Using knockout mouse models, we confirmed that SEPP1 and its receptor low-density lipoprotein receptor-related protein 8 (LRP8) are required for the exercise-induced increase in adult hippocampal neurogenesis. In vivo selenium infusion increased hippocampal neural precursor cell (NPC) proliferation and adult neurogenesis. Mimicking the effect of exercise through dietary selenium supplementation restored neurogenesis and reversed the cognitive decline associated with aging and hippocampal injury, suggesting potential therapeutic relevance. These results provide a molecular mechanism linking exercise-induced changes in the systemic environment to the activation of quiescent hippocampal NPCs and their subsequent recruitment into the neurogenic trajectory.


Asunto(s)
Células-Madre Neurales , Selenio , Envejecimiento , Animales , Proliferación Celular , Hipocampo , Ratones , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Selenio/metabolismo , Selenio/farmacología
5.
Metallomics ; 11(12): 1974-1983, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31660552

RESUMEN

Selenium is an essential trace element in human health and therefore its concentration in biological samples (biofluids and tissues) is used as an indicator of health and nutritional status. In humans, selenium's biological activity occurs through the 25 identified selenoproteins. As total selenium concentration encompasses both functional selenoproteins, small selenocompounds and other selenium-binding proteins, selenium speciation, rather than total concentration, is critical in order to assess functional selenium. Previously, quantitative analysis of selenoproteins required laborious techniques that were often slow and costly. However, more recent advancements in tandem mass spectrometry have facilitated the qualitative and quantitative identification of these proteins. In light of the current alternatives for understanding selenium biochemistry, we aim to provide a review of the modern applications of electrospray ionisation mass spectrometry (ESI-MS) as an alternative to inductively coupled plasma mass spectrometry (ICP-MS) for qualitative and quantitative selenium speciation.


Asunto(s)
Proteínas de Unión al Selenio/análisis , Selenio/análisis , Selenoproteínas/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masas en Tándem/métodos , Oligoelementos/análisis , Cromatografía Líquida de Alta Presión/métodos , Humanos
6.
J Alzheimers Dis ; 57(1): 183-193, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28222503

RESUMEN

Selenium (Se) protects cells against oxidative stress damage through a range of bioactive selenoproteins. Increased oxidative stress is a prominent feature of Alzheimer's disease (AD), and previous studies have shown that Se deficiency is associated with age-related cognitive decline. In this study, we assessed Se status in different biofluids from a subgroup of participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing. As Se in humans can either be an active component of selenoproteins or inactive via non-specific incorporation into other proteins, we used both size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) and tandem mass spectrometry to characterize selenoproteins in serum. We observed no differences in total Se concentration in serum or cerebrospinal fluid of AD subjects compared to mildly cognitively impairment patients and healthy controls. However, Se levels in erythrocytes were decreased in AD compared to controls. SEC-ICP-MS analysis revealed a dominant Se-containing fraction. This fraction was subjected to standard protein purification and a bottom-up proteomics approach to confirm that the abundant Se in the fraction was due, in part, to selenoprotein P. The lack of change in the Se level is at odds with our previous observations in a Brazilian population deficient in Se, and we attribute this to the Australian cohort being Se-replete.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Disfunción Cognitiva/sangre , Disfunción Cognitiva/líquido cefalorraquídeo , Selenio/sangre , Selenio/líquido cefalorraquídeo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/genética , Estudios de Cohortes , Eritrocitos/metabolismo , Femenino , Humanos , Masculino , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA