Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 292: 115234, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35358621

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Parkinson's disease (PD) is the second most devastating age-related neurodegenerative diseases after Alzheimer diseases (AD) and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN) and aggregation of α-synuclein (α-syn). The precise etiology of PD is not yet fully understood and lacks the disease-modifying therapeutic strategies that could reverse the ongoing neurodegeneration. In the quest of exploring novel disease modifying therapeutic strategies, natural compounds from plant sources have gained much attention in recent days. Glycyrrhizin (GL) is the main active ingredient of the roots and rhizomes of licorice (Glycyrrhiza glabra L), which are generally used in the treatment of inflammatory diseases or as a tonifying herbal medicine. In Persia, GL is a conventional neuroprotective agent that are used to treat neurological disorders. The traditional use of GL in Japan is to treat chronic hepatitis B. In addition, GL is a natural inhibitor of high mobility group box 1 (HMGB1) which has exerted neuroprotective effect against several HMGB1 mediated pathological conditions. AIM OF THE STUDY: The study is aimed to evaluate therapeutic effect of GL against PD in zebrafish. MATERIAL AND METHODS: PD in zebrafish larvae is induced by administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Apoptosis was assessed with TUNEL assay. Gene expression was performed to assess the modulation in genes related to neuroinflammatory and autophagy. RESULTS: We observed that GL co-treatment increased the length of DA neurons, decreased the number of apoptotic cells in zebrafish brain, and inhibited the loss of vasculature and disorganized vasculature induced by MPTP. GL co-treatment relieved the MPTP-induced locomotor impairment in zebrafish. GL co-treatment suppressed MPTP-induced upregulated mRNA expression of inflammatory markers such as hmgb1a, tlr4b, nfκb, il1ß, and il6. GL co-treatment suppressed the autophagy related genes α-syn and atg5 whereas increased the mRNA expression level of parkin and pink1. In addition, molecular docking study reveals that GL has binding interaction with HMGB1, TLR4, and RAGE. CONCLUSION: Hence, the effect of GL co-treatment on MPTP-induced PD-like condition in zebrafish is to alleviate apoptosis and autophagy, as well as suppress inflammatory responses.


Asunto(s)
Proteína HMGB1 , Fármacos Neuroprotectores , Enfermedad de Parkinson , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Ácido Glicirrínico/farmacología , Ácido Glicirrínico/uso terapéutico , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Neuroprotección , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , ARN Mensajero , Pez Cebra
2.
J Ethnopharmacol ; 289: 115018, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35092824

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (G. elata), a traditional Chinese herb, known as "Tian Ma", is widely used as a common medicine and diet ingredient for treating or preventing neurological disorders for thousands of years in China. However, the anti-depressant effect of G. elata and the underlying mechanism have not been fully evaluated. AIM OF THE STUDY: The study is aimed to investigate the anti-depressant effect and the molecular mechanism of G. elata in vitro and in vivo using PC12 cells and zebrafish model, respectively. MATERIAL AND METHODS: Network pharmacology was performed to explore the potential active ingredients and action targets of G. elata Blume extracts (GBE) against depression. The cell viability and proliferation were determined by MTT and EdU assay, respectively. TUNEL assay was used to examine the anti-apoptotic effect of GBE. Immunofluorescence and Western blot were used to detect the protein expression level. In addition, novel tank diving test was used to investigate the anti-depressant effect in zebrafish depression model. RT-PCR was used to analyze the mRNA expression levels of genes. RESULTS: G. elata against depression on the reticulon 4 receptors (RTN4R) and apoptosis-related targets, which were predicted by network pharmacology. Furthermore, GBE enhanced cell viability and inhibited the apoptosis in PC12 cells against CORT treatment. GBE relieved depression-like symptoms in adult zebrafish, included increase of exploratory behavior and regulation of depression related genes. Mechanism studies showed that the GBE inhibited the expression of RTN4R-related and apoptosis-related genes. CONCLUSION: Our studies show the ameliorative effect of G. elata against depression. The mechanism may be associated with the inhibition of RTN4R-related and apoptosis pathways.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antidepresivos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Gastrodia , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Farmacología en Red , Receptor Nogo 1/genética , Células PC12 , Ratas , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA