Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EBioMedicine ; 91: 104533, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027929

RESUMEN

BACKGROUND: Probiotics have been increasingly proposed for enhancing immune checkpoint blockade (ICB) treatments against cancer. However, its causal relationship with immunotherapeutic efficacy remains unclear, which promoted us to explore if and how probiotic Lacticaseibacillus rhamnosus Probio-M9 manipulates gut microbiome for expected outcomes. METHODS: We evaluated the effects of Probio-M9 on the anti-PD-1 treatment against colorectal cancer in mice via a multi-omics approach. We defined the mechanisms of Probio-M9-mediated antitumor immunity by comprehensive analyses of metagenome and metabolites of commensal gut microbes as well as the immunologic factors and serum metabolome of the host. FINDINGS: The results indicated that Probio-M9 intervention strengthened the anti-PD-1-based tumor inhibition. Both prophylactic and therapeutic administration of Probio-M9 showed conspicuous performance in controlling tumor growth with ICB treatment. The supplement of Probio-M9 modulated enhanced immunotherapy response through promoting beneficial microbes (e.g., Lactobacillus and Bifidobacterium animalis), producing beneficial metabolites including butyric acids in the gut, and accumulating blood-derived α-ketoglutaric acid, N-acetyl-l-glutamic acid and pyridoxine in particular, which promoted the infiltration and activation of cytotoxic T lymphocytes (CTLs) and suppressing the function of regulatory T cells (Tregs) in the tumor microenvironment (TME). Subsequently, we found that enhanced immunotherapeutic response was transmissible by transplanting either post-probiotic-treatment gut microbes or intestinal metabolites to new tumor-bearing mice. INTERPRETATION: This study offered valuable insight into the causal role of Probio-M9 in correcting the defects in gut microbiota that compromised anti-PD-1 therapeutic efficacy, which can be used as an alternative synergetic agent with ICB for clinical cancer treatment. FUNDING: This research was supported by Research Fund for the National Key R&D Program of China (2022YFD2100702), Inner Mongolia Science and Technology Major Projects (2021ZD0014), and China Agriculture Research System of MOF and MARA.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Lacticaseibacillus rhamnosus , Neoplasias , Probióticos , Animales , Ratones , Suplementos Dietéticos , Lacticaseibacillus , Neoplasias/tratamiento farmacológico , Probióticos/uso terapéutico , Microambiente Tumoral , Inhibidores de Puntos de Control Inmunológico/uso terapéutico
2.
Front Nutr ; 9: 814269, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242797

RESUMEN

Pancreatic-related disorders such as pancreatitis, pancreatic cancer, and type 1 diabetes mellitus (T1DM) impose a substantial challenge to human health and wellbeing. Even though our understanding of the initiation and progression of pancreatic diseases has broadened over time, no effective therapeutics is yet available for these disorders. Mounting evidence suggests that gut dysbiosis is closely related to human health and disease, and pancreatic diseases are no exception. Now much effort is under way to explore the correlation and eventually potential causation between the gut microbiome and the course of pancreatic diseases, as well as to develop novel preventive and/or therapeutic strategies of targeted microbiome modulation by probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT) for these multifactorial disorders. Attempts to dissect the intestinal microbial landscape and its metabolic profile might enable deep insight into a holistic picture of these complex conditions. This article aims to review the subtle yet intimate nexus loop between the gut microbiome and pancreatic diseases, with a particular focus on current evidence supporting the feasibility of preventing and controlling pancreatic diseases via microbiome-based therapeutics and therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA