Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
IEEE Trans Neural Syst Rehabil Eng ; 25(8): 1125-1134, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27337719

RESUMEN

Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.


Asunto(s)
Articulación del Tobillo/fisiología , Dispositivo Exoesqueleto , Contracción Isométrica/fisiología , Sistemas Hombre-Máquina , Modelos Biológicos , Músculo Esquelético/fisiología , Robótica/instrumentación , Adulto , Miembros Artificiales , Biorretroalimentación Psicológica/instrumentación , Biorretroalimentación Psicológica/métodos , Simulación por Computador , Suministros de Energía Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación Fisiológica/fisiología , Femenino , Humanos , Masculino , Rehabilitación Neurológica/instrumentación , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA