RESUMEN
Siegesbeckiae Herba, a traditional Chinese medicine, originates from Siegesbeckia orientalis, S. glabrescens, and S. pubescens in the Pharmacopoeia of the People's Republic of China. However, accurate identification of decoction pieces from the three plants remains a challenge. In this study, 26 batches of Siegesbeckiae Herba were identified by deoxyribonucleic acid barcoding, and their chemical compositions were determined using ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-mass spectrometry. The results showed that the internal transcribed spacer 2 and internal transcribed spacer 1-5.8 S- internal transcribed spacer 2 sequences could distinguish three species. In total, 48 compounds were identified including 12 marker compounds screened for three species using the partial least square discriminant analysis. Among these, two diterpenoids 16-O-malonylkirenol and 15-O-malonylkirenol, and a novel diterpenoid 15,16-di-O-malonylkirenol were isolated and identified. A convenient method for the identification of Siegesbeckiae Herba was established using kirenol and 16-O-acetlydarutoside as control standards by thin-layer chromatography. Unexpectedly, none of the batches of S. orientalis contained kirenol, which did not meet the quality standards of Siegesbeckiae Herba, suggesting that the rationality of kirenol as a quality marker for S. orientalis should be further investigated. The results of this study will contribute to the quality control of Siegesbeckiae Herba.
Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masa por Ionización de Electrospray , Humanos , Espectrometría de Masa por Ionización de Electrospray/métodos , Medicamentos Herbarios Chinos/química , Cromatografía Liquida/métodos , ADN , Cromatografía Líquida de Alta Presión/métodosRESUMEN
OBJECTIVES: Motor imagery has been used to investigate the cognitive mechanism of motor control. Although behavioral and electrophysiological changes in motor imagery in people with amnestic mild cognitive impairment (aMCI) have been reported, deficits in different types of imagery remain unclear. To explore this question, we used electroencephalography (EEG) to study neural correlates of visual imagery (VI) and kinesthetic imagery (KI) and their relationship to cognitive function in people with aMCI. METHODS: A hand laterality judgment task was used to induce implicit motor imagery in 29 people with aMCI and 40 healthy controls during EEG recording. Mass univariate and multivariate EEG analysis was applied to explore group differences in a data-driven manner. RESULTS: Modulation of stimuli orientation to event-related potential (ERP) amplitudes differed significantly between groups at 2 clusters located in the posterior-parietal and frontal areas. Multivariate decoding revealed sufficient representation of VI-related orientation features in both groups. Relative to healthy controls, the aMCI group lacked accurate representation of KI-related biomechanical features, suggesting deficits in automatic activation of KI strategy. Electrophysiological correlates were associated with episodic memory, visuospatial function, and executive function. Higher decoding accuracy of biomechanical features predicted better executive function via longer response time in the imagery task in the aMCI group. DISCUSSION: These findings reveal electrophysiological correlates related to motor imagery deficits in aMCI, including local ERP amplitudes and large-scale activity patterns. Alterations in EEG activity are related to cognitive function in multiple domains, including episodic memory, suggesting the potential of these EEG indices as biomarkers of cognitive impairment.
Asunto(s)
Disfunción Cognitiva , Electroencefalografía , Humanos , Disfunción Cognitiva/psicología , Cognición , Función Ejecutiva , Potenciales Evocados/fisiología , Pruebas NeuropsicológicasRESUMEN
Purpose: The ripe fruits of Citrus changshan-huyou, known as Quzhou Fructus Aurantii (QFA), have been commonly used for respiratory diseases. The purpose of this study was to investigate their active compounds and demonstrate their mechanism in the treatment of upper respiratory tract infections (URTIs) through network pharmacology and molecular docking. Methods: The prominent compounds of QFA were acquired from TCMSP database. Their targets were retrieved from SwissTargetPrediction database, and target genes associated with URTIs were collected from DisGeNET and GeneCards databases. The target protein-protein interaction (PPI) network was constructed by using STRING database and Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were enriched. Visual compound-target-pathway network was established with Cytoscape. The effects of compounds were verified on the inhibitory activities against phosphoinositide 3-kinases (PI3Ks). Finally, the molecular docking was carried out to confirm the binding affinity of the bioactive compounds and target proteins. Results: Five important active compounds, naringenin (NAR), tangeretin (TAN), luteolin (LUT), hesperetin (HES), and auraptene (AUR), were obtained. The enrichment analysis demonstrated that the pathways associated with inflammation mainly contained PI3K/Akt signalling pathway, TNF signalling pathway, and so on. The most important targets covering inflammation-related proteins might be PI3Ks. In vitro assays and molecular docking exhibited that TAN, LUT, and AUR acted as PI3Kγ inhibitors. Conclusion: The results revealed that QFA could treat URTIs through a multi-compound, multi-target, multi-pathway network, in which TAN, LUT, and AUR acted as PI3Kγ inhibitors, probably contributing to a crucial role in treatment of URTIs.
RESUMEN
Colorectal cancer (CRC) is one of the most common gastrointestinal cancers worldwide. This complex and often fatal disease has a high mortality rate. The Hedgehog (Hh) signaling pathway is crucial in CRC. Many studies have indicated that Shh is overexpressed in cancer stem cells (CSCs), and shh overexpression is positively correlated with CRC tumorigenesis. New drugs that kill CRC cells through the Hh pathway are needed. Toosendanin (TSN), a natural triterpenoid saponin extracted from the bark or fruit of Melia toosendan Sieb. et Zucc, can inhibit various tumors. Here, we investigated the effects of TSN in CRC and explored the possible targets and mechanisms. Shh-Light â ¡ cells were treated with TSN and tested by dual luciferase reporter assays to determine the relationship with the Hh pathway. Cell Counting Kit-8 (CCK-8) assays were used to test the inhibitory effects of TSN on CRC cells. The expression of Hh components after TSN treatment was detected using western blots and quantitative reverse transcription polymerase chain reaction. Cellular thermal shift assays confirmed the targets of TSN. The same effects of TSN on xenograft tumor growth were investigated in vivo. The average weight, volume of the finally resected tumor, and the expression of Shh in the TSN-treated groups were significantly lower than those of the control group. This result strongly suggested that TSN administration inhibited CRC growth in vivo. Our research preliminarily demonstrated that the target of TSN was Shh and that TSN inhibits CRC cell growth by inhibiting the Hh pathway, identifying a new anticancer molecular mechanism of TSN in CRC.
Asunto(s)
Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Apoptosis , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Proteínas Hedgehog , Humanos , TriterpenosRESUMEN
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Asunto(s)
Trastornos del Humor/tratamiento farmacológico , Pregnanolona/uso terapéutico , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Humanos , Pregnanolona/farmacología , Receptores de GABA-A/efectos de los fármacosRESUMEN
Ligustilide is a phenolic compound isolated from Asian plants of Umbelliferae family. This study was aimed at exploring the neuroprotective effects of Ligustilide from the perspective of endoplasmic reticulum stress (ERS) and autophagy. The Alzheimer's disease (AD) cell models were constructed by SH-SY5Y cell line, which was exposed to 20 µM Aß25-35 . CCK-8 was used to evaluate the cell viability of Ligustilide on AD cell model. Hoechst staining and LysoTracker Red were used to test the cell apoptosis and Lysosome function, respectively. ERS in living cells were detected by Thioflavin T. The expression of autophagy-related proteins (LC3B-II/I, P62/SQSTM1, Beclin1, and Atg5), ERS marker proteins (PERK, GRP78, and CHOH), and apoptosis proteins (Bax, Bcl-2, and Caspase-12) were analyzed by Western blot analyses. Aß25-35 could induce ERS and autophagy in a time-dependent manner in SH-SY5Y cells. We demonstrated that Ligustilide significantly decreased the rate of apoptosis, and improved the viability of cells. Simultaneously, Ligustilide effectively modulated ERS via inhibiting the over-activation of GRP78/PERK/CHOP signaling pathway. In addition, Ligustilide alleviated the accumulation of autophagy vacuoles, reduced the ratio of LC3B-II/I and the level of P62/SQSTM1. Ligustilide significantly up-regulated lysosomal acidity and the expression of Cathepsin D (CTSD). Ligustilide could rescue lysosomal function to promote autophagy flux and inhibit the over-activation of ERS. This finding may contribute to the development of new therapeutic strategies for AD.
Asunto(s)
4-Butirolactona/análogos & derivados , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/tratamiento farmacológico , 4-Butirolactona/farmacología , 4-Butirolactona/uso terapéutico , Apoptosis , Chaperón BiP del Retículo Endoplásmico , Humanos , Fármacos Neuroprotectores/farmacología , Transducción de Señal , TransfecciónRESUMEN
Motor imagery is considered as an ideal window to observe neural processes of action representations. Behavioral evidence has indicated an alteration of motor imagery in amnestic mild cognitive impairment (aMCI). However, it still remains unclear on the altered neurophysiological processing mechanism of motor imagery and whether this mechanism links the abnormal biological basis of motor imagery with impaired cognition in aMCI. This study was to investigate the altered neurophysiological processing mechanism of motor imagery and to examine the relationships between this knowledge and the altered structural basis of motor imagery with impaired cognition in aMCI. A hand mental rotation paradigm was used to manipulate the processing of motor imagery while event-related brain potentials (ERPs) were recorded and gray matter (GM) voxel-based morphometry was performed in 20 aMCI and 29 healthy controls. Compared with controls, aMCI exhibited lower ERP amplitudes in parietal cortex and higher ERP amplitudes in frontal cortex during motor imagery. In addition, aMCI showed reduced GM volumes in cerebellum posterior lobe, insula and hippocampus/parahippocampal gyrus, and increased GM volumes in middle cingulate gyrus and superior frontal gyrus. Most importantly, increased ERP amplitude significantly mediated the association between increased GM and cognition. This study provided a novel evidence for the relationships between the electrophysiological processing mechanism and structural basis of motor imagery with impaired cognition in aMCI. It suggests that improving neural activity by stimulating the frontal lobe can potentially contribute to acquire motor imagery skills for neurological rehabilitation in aMCI subjects.
Asunto(s)
Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Fenómenos Electrofisiológicos , Sustancia Gris/patología , Sustancia Gris/fisiopatología , Imaginación/fisiología , Movimiento , Anciano , Encéfalo/fisiopatología , Mapeo Encefálico , Cognición , Femenino , Hipocampo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo TemporalRESUMEN
This study aims to investigate the PPARγ agonists isolated from the aqueous extract of Siegesbeckia pubescens( SPA) and their anti-inflammatory activities in vitro. The 293 T cells transfected transiently with PPARγ recombinant plasmid were used as a screening model to guide the isolation of PPARγ activitating components,and then PPARγ activities were measured by double luciferase reporter gene assay. The chemical structures were identified by chromatography or spectroscopic techniques. Furthermore,a UC inflammatory model in vitro was established on HT-29 cells by stimulating with TNF-αï¼ The mRNA levels and secretion of proinflammatory cytokines on HT-29 cells,such as IL-1ß,TNF-α,IL-8,were detected by RT-PCR and ELISA. The results showed that five diterpenoids were obtained from the fraction D_(50) with the strongest PPARγ activity among others in SPA,and determined as kirenol( 1),darutigenol( 2),enantiomeric-2-ketone-15,16,19-three hydroxypinomane-8( 14)-ene-19-O-ß-D-glucoside( 3),darutoside( 4),enantiomeric-2-ß,15,16,19-four hydroxypinomane-8( 14)-ene-19-O-ß-D-glucoside( 5),respectively. All the compounds exhibited active effects on PPARγ in a concentration-dependent manner( P<0. 01). In addition,compound 1 significantly inhibited the expression of IL-1ß mRNA and secretion of IL-8 on HT-29 cells inflammation model( P<0. 001); both compounds 2 and 3 effectively inhibited the expression of IL-1ß,TNF-α,IL-8 mRNA and secretion of IL-8( P<0. 01 or P<0. 001),although at different extent; compound 4 significantly inhibited the expression of IL-1ß and TNF-α mRNA( P<0. 01 or P<0. 001),while compound 5 inhibited the expression of IL-1ß mRNA obviously( P<0. 001). In conclusion,the diterpenoids 1-5 isolated from S. pubescens have the PPARγ activation activities and potential effects of anti-UC in vitro.
Asunto(s)
Antiinflamatorios/farmacología , Asteraceae/química , Diterpenos/farmacología , PPAR gamma/agonistas , Colitis Ulcerosa , Citocinas/inmunología , Células HT29 , Humanos , Factor de Necrosis Tumoral alfaRESUMEN
Our previous study showed that catechin controlled rats' body weights and changed gut microbiota composition when supplemented into a high-fructo-oligosaccharide (FOS) diet. This experiment is devised to further confirm the relationship between specific bacteria in the colon and body weight gain, and to investigate how specific bacteria impact body weight by changing the expression of colonic epithelial cells. Forty obese rats were divided into four groups: three catechin-supplemented groups with a high-FOS diet (100, 400, and 700 mg kg-1 d-1 catechin, orally administered) and one group with a high-FOS diet only. Food consumption and body weights were recorded each week. After one month of treatment, rats' cecal content and colonic epithelial cells were individually collected and analyzed with MiSeq and gene expression profiling techniques, respectively. Results identified some specific bacteria at the genus level-including the increased Parabacteroides sp., Prevotella sp., Robinsoniella sp., [Ruminococcus], Phascolarctobacterium sp. and an unknown genus of YS2, and the decreased Lachnospira sp., Oscillospira sp., Ruminococcus sp., an unknown genus of Peptococcaceae and an unknown genus of Clostridiales in rats' cecum-and eight genes-including one downregulated Pla2g2a and seven upregulated genes: Apoa1, Apoa4, Aabr07073400.1, Fabp4, Pik3r5, Dgat2 and Ptgs2 of colonic epithelial cells-that were due to the consumption of catechin. Consequently, various biological functions in connection with energy metabolism in colonic epithelial cells were altered, including fat digestion and absorption and the regulation of lipolysis in adipocytes. In conclusion, catechin induces host weight loss by altering gut microbiota and gene expression and function in colonic epithelial cells.
Asunto(s)
Catequina/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Obesidad/microbiología , Oligosacáridos/metabolismo , Pérdida de Peso/efectos de los fármacos , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Suplementos Dietéticos/análisis , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos , Masculino , Obesidad/genética , Obesidad/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Uncontrolled excessive activation of Hedgehog (Hh) signaling pathway is linked to a number of human malignant tumorigenesis. To obtain valuable Hh pathway inhibitors from natural product, in present study, a pair of novel epimers, Cynanbungeigenin C (CBC) and D (CBD) from the plant Cynanchum bungei Decne were chemically characterized by multiple spectroscopic data and chemical derivatization, and evaluated for their inhibition on Hh pathway. Mechanistically, CBC and CBD block Hh pathway signaling not through targeting Smo and Sufu, but at the level of Gli. In addition, both eipmers significantly suppress Hh pathway-dependent Ptch+/-; p53-/- medulloblastoma in vitro and in vivo. Furthermore, both CBC and CBD inhibited two Smo mutants induced Hh pathway activation, which suggested that they are potential compounds for the treatment of medulloblastoma with primary or acquired resistance to current Smo inhibitors. These results highlight the potential of CBC and CBD as effective lead compounds in the treatment of medulloblastoma and other Hh-dependent malignancy.
Asunto(s)
Neoplasias Cerebelosas/tratamiento farmacológico , Cynanchum/química , Meduloblastoma/tratamiento farmacológico , Fitosteroles/administración & dosificación , Fitosteroles/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias Cerebelosas/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/metabolismo , Ratones , Células 3T3 NIH , Fitosteroles/química , Fitosteroles/farmacología , Extractos Vegetales/análisis , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína con Dedos de Zinc GLI1/metabolismoRESUMEN
Two new 13, 14/14, 15-disecopregnane-type skeleton C21 steroidal aglycones, neocynapanogenin G (1) and neocynapanogenin H (2), were isolated from the hydrolyzed extract of the CHCl3 soluble extract of the roots of Cynanchun paniculatum. Their structures were determined on the basis of chemical evidence and extensive spectroscopic methods, including 1D and 2D NMR spectroscopy. Compound 1 displayed signifidant inhibition of the Hedgehog signaling pathway in vitro.
Asunto(s)
Cynanchum/química , Medicamentos Herbarios Chinos/química , Iridoides/química , Raíces de Plantas/química , Esteroides/química , Animales , Línea Celular , Erizos/genética , Erizos/metabolismo , Humanos , Estructura Molecular , Transducción de Señal/efectos de los fármacosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: G. rigescens Franch (Long Dan Cao in Chinese) is a well-known TCM herb. It is clinically used with other drugs for the treatment of brain diseases such as epilepsy, postherpetic neuralgia in China. AIM OF STUDY: In our previous study, the 11 dihydroxybenzoates compounds with NGF mimicking activity from G. rigescens Franch were found. In the present study, the neurogenesis and neuroprotection of a mixture of benzoates ( n-GS) were investigated in animal level. MATERIALS AND METHODS: The NGF mimicking activity of n-GS from G. rigescens Franch was examined in PC12 cells. The neurogenesis effects of n-GS were investigated in ICR mice with 5-bromo-2-deoxyuridine (BrdU) and neuronal neclei (NeuN) double immunostaining. Furthermore, the neuroprotection effects of n-GS on the memory in a scopolamine (SCO)-induced mouse model were evaluated with animal behavior tests. RESULTS: The NGF-mimicking function and neurogenesis of n-GS were observed in PC12 cells and in normal mice. Subsequently, we investigated the effects of n-GS on the memory in a SCO-induced mouse model. In Y-maze test, SCO significantly lowered the alternation. This finding was reversed by n-GS and donepezil (DONE). SCO significantly impaired the mice's performance in novel object recognition (NOR) and Morris water maze (MWM) tests. The time spent to explore the novel object was longer in the n-GS- and DONE-treated groups than in the SCO control group. In the MWM test, the escape latency of n-GS- and DONE-treated groups was shorter than that of the SCO control group. Mechanism study showed that SCO significantly reduced superoxide dismutase (SOD) but increased the activities of acetylcholinesterase (AChE) and the levels of malondialdehyde (MDA) in the hippocampus and cerebral cortex, which all can be improved by n-GS and DONE. Additionally, the phosphorylation of type 1 insulin-like growth factor (IGF-1) receptor, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding (CREB) protein in the hippocampus was significantly up-regulated in the treatment group compared with that in the SCO group. CONCLUSIONS: n-GS could alleviate impaired memory of the SCO-induced mice model by inhibiting AChE activity and oxidative stress, and regulating the IGF-1R/ERK signaling pathway.
Asunto(s)
Gentiana/química , Trastornos de la Memoria/tratamiento farmacológico , Preparaciones de Plantas/farmacología , Animales , Benzoatos , Antagonistas Colinérgicos/toxicidad , Trastornos de la Memoria/inducido químicamente , Ratones , Ratones Endogámicos ICR , Escopolamina/toxicidadRESUMEN
Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer's disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways.
Asunto(s)
Arachis/química , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Aceites de Pescado/farmacología , Extractos Vegetales/farmacología , Animales , Antioxidantes , Factor Neurotrófico Derivado del Encéfalo/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Aceites de Pescado/administración & dosificación , Aceites de Pescado/química , Regulación de la Expresión Génica/efectos de los fármacos , Mesotelina , Ratones , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/químicaRESUMEN
OBJECTIVE: To investigate the effect of Guben-fangxiao decoction (GBFXD) on respiratory-syncytial-virus (RSV)-induced asthma and the expression of asthma susceptibility gene, orosomucoid 1-like protein 3 (ORMDL3) in mice. METHODS: Seventy-two female BALB/c mice were randomly assigned to normal, model, GBFXD high dose, GBFXD moderate dose, GBFXD low dose and montelukast groups. An asthma model was induced via intraperitoneal injection and aerosol inhalation of ovalbumin (OVA) and repeated intranasal instillation of RSV in all mice, except those in the normal group. All treatments were administered at the first onset of asthma (within 8 weeks of model establishment) and the mice were euthanized after 28 days of treatment. The levels of transforming growth factor-ß (TGF-ß) and interleukin-6 (IL-6) in bronchoalveolar lavacie fluid (BALF) of the mice were measured and the expression of asthma susceptibility gene ORMDL3 in lung tissue was determined using real-time polymerase chain reaction (RT-PCR) and western blotting. RESULTS: Expression of ORMDL3 and levels of TGF-ß and IL-6 were significantly higher in the model group (P < 0.05, P < 0.01) compared with the normal mice. Levels of ORMDL3, TGF-ß and IL-6 were significantly lower in all three GBFXD treated groups (P < 0.05) compared with the model group. However, the levels in the GBFXD treatment groups did not differ significantly from the montelukast group. CONCLUSION: GBFXD had a therapeutic effect in this experimental model. The functional mechanism of GBFXD may involve multiple factors, including alleviation of airway inflammation, down-regulation of asthma susceptibility gene ORMDL3 and inhibition of airway remodeling.
Asunto(s)
Asma/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Proteínas de la Membrana/genética , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/fisiología , Animales , Asma/genética , Asma/inmunología , Femenino , Humanos , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/efectos de los fármacosRESUMEN
The function of plant polyphenols in controlling body weight has been in focus for a long time. The aim of this study was to investigate the effect of plant polyphenols on fecal microbiota utilizing oligosaccharides. Three plant polyphenols, quercetin, catechin and puerarin, were added into liquid media for fermenting for 24 h. The pH values, OD600 of the cultures and the content of carbohydrates at 0, 6, 10, 14, 18 and 24 h were determined. The abundance of Bacteroidetes and Firmicutes in each culture was quantified with qPCR after 10 h of fermentation, and the bacterial composition was analyzed using the software Quantitative Insights Into Microbial Ecology. The results revealed that all three plant polyphenols could significantly inhibit the growth of Bacteroidetes (P < 0.01) and Firmicutes (P < 0.01) while at the same time down-regulate the ratio of Bacteroidetes to Firmicutes (P < 0.01). But the fecal bacteria could maintain the ability to hydrolyze fructo-oligosaccharide (FOS) in vitro. Among the tested polyphenols, catechin presented the most intense inhibitory activity towards the growth of Bacteroidetes and Firmicutes, and quercetin was the second. Only the samples with catechin had a significantly lower energy metabolism (P < 0.05). In conclusion, plant polyphenols can change the pathway of degrading FOS or even energy metabolism in vivo by altering gut microbiota composition. It may be one of the mechanisms in which plant polyphenols can lead to body weight loss. It's the first report to study in vitro gastrointestinal microbiota fermenting dietary fibers under the intervention of plant polyphenols.
Asunto(s)
Bacteroidetes/metabolismo , Metabolismo Energético/efectos de los fármacos , Heces/microbiología , Firmicutes/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Fermentación , Firmicutes/genética , Firmicutes/crecimiento & desarrollo , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Oligosacáridos/metabolismoRESUMEN
Two new 8, 14-seco skeleton C(21) steroidal aglycones, cynanbungeigenin A (1) and cynanbungeigenin B (2), were isolated from the hydrolyzed extract of the EtOAc soluble extract of the roots of Cynanchum bungei. Their structures were determined on the basis of chemical evidence and extensive spectroscopic methods, including 1D and 2D NMR spectroscopy.
Asunto(s)
Cynanchum/química , Pregnanos/aislamiento & purificación , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Proteínas Hedgehog/antagonistas & inhibidores , Ratones , Células 3T3 NIH , Extractos Vegetales/química , Raíces de Plantas/química , Pregnanos/química , Pregnanos/farmacología , Espectroscopía de Protones por Resonancia MagnéticaRESUMEN
Our previous study reported that a mixture of cerebrosides from traditional Chinese medicine Baifuzi could activate BKCa channel. It is curious to know the effect of each single cerebroside on the channel. Here we isolated 5 pure cerebrosides from the mixture and determined their chemical structures. The most potent one increased the single channel open probability 6 folds with EC50 value of 1.0 µM. The structure-activity relationship revealed that acyl chain length of cerebrosides has potent effect, while configuration of double bond at C8-C9 on their long chain base has weak effect on the channel activity. Thus, this research provides a guide for design and synthesis of a lead cerebroside with more potent effect on the BKCa channel.
Asunto(s)
Cerebrósidos/química , Cerebrósidos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/agonistas , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Animales , Células CHO , Cerebrósidos/aislamiento & purificación , Cricetulus , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
OBJECTIVE: To search for low-molecular-weight neuritogenic compounds from the traditional Chinese medicine (TCM). METHOD: An extract library of TCM was prepared. Targeted isolation guided by biological screening led to the discovery of compound 1, and its structure was elucidated by analysis of spectroscopic methods and comparison of spectroscopic data with these reported from the literature. RESULT: A neuritogenic compound 1, 3-O-beta-D-glucopyranosyl-22E, 24R-5alpha, 8alpha-epidioxyergosta-6, 22-diene, was isolated and identified from the methanol extract of T. fuciformis. This compound showed a significant neuritogenic activity against PC12 cells at 3 micromol x L(-1)). CONCLUSION: Methonal extract of T. fuciformis and targeted compound 1 both showed significant neuritogenic activity against PC12 cells. These results suggested that the extract and compound 1 might be used to prevent and treat neurodegenerative disease such as Alzheimer's disease.
Asunto(s)
Basidiomycota/química , Medicamentos Herbarios Chinos/química , Factor de Crecimiento Nervioso/química , Animales , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Estructura Molecular , Factor de Crecimiento Nervioso/aislamiento & purificación , Factor de Crecimiento Nervioso/farmacología , Neuritas/efectos de los fármacos , Células PC12 , RatasAsunto(s)
Benzoatos/síntesis química , Gentisatos/química , Gentisatos/farmacología , Neuritas/efectos de los fármacos , Relación Estructura-Actividad , Animales , Benzoatos/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Gentiana/química , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Sistema de Señalización de MAP Quinasas , Espectroscopía de Resonancia Magnética , Estructura Molecular , Factor de Crecimiento Nervioso/farmacología , Células PC12 , Fosforilación , RatasRESUMEN
A new steroidal saponin was isolated from Ophiopogon japonicus. This saponin possesses a modification by 2-hydroxy-3-methylvalerylation of the hydroxyl group at C-4' of the sugar, linked to C-1 of the aglycone. It exhibited significant neuritogenic activity for PC12 cells. The structure-activity relationship revealed the aglycone, rather than the sugar moieties and acylation, to be important for the neuritogenic activity.