Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Chem Biol ; 30(9): 1104-1114.e7, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37164019

RESUMEN

Uric acid, the end product of purine degradation, causes hyperuricemia and gout, afflicting hundreds of millions of people. The debilitating effects of gout are exacerbated by dietary purine intake, and thus a potential therapeutic strategy is to enhance purine degradation in the gut microbiome. Aerobic purine degradation involves oxidative dearomatization of uric acid catalyzed by the O2-dependent uricase. The enzymes involved in purine degradation in strictly anaerobic bacteria remain unknown. Here we report the identification and characterization of these enzymes, which include four hydrolases belonging to different enzyme families, and a prenyl-flavin mononucleotide-dependent decarboxylase. Introduction of the first two hydrolases to Escherichia coli Nissle 1917 enabled its anaerobic growth on xanthine as the sole nitrogen source. Oral supplementation of these engineered probiotics ameliorated hyperuricemia in a Drosophila melanogaster model, including the formation of renal uric acid stones and a shortened lifespan, providing a route toward the development of purinolytic probiotics.


Asunto(s)
Gota , Hiperuricemia , Humanos , Animales , Ácido Úrico/metabolismo , Anaerobiosis , Drosophila melanogaster/metabolismo , Gota/metabolismo , Purinas/metabolismo , Escherichia coli/metabolismo , Hidrolasas/metabolismo
2.
Heliyon ; 8(4): e09232, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35399385

RESUMEN

Kidney stone disease is a global problem affecting about 12% of the world population. Novel treatments to control this disease have a huge demand. Here we argue that the fruit fly, as an emerging kidney stone model, can provide a platform for the discovery of new drugs. The renal system of fruit fly (Malpighian tubules) is similar to the mammalian renal tubules in both function and structure. Different fruit fly models for different types of kidney stones including calcium oxalate (CaOx) stones, xanthine stones, uric acid stone, and calcium phosphate (CaP) stones have been successfully established through dietary or genetic approaches in the last ten years, notably improved our understanding of the formation mechanisms of kidney stone diseases. The fruit fly CaOx stones model, which is mediated by treatment with dietary lithogenic agents, is also one of the most potential models for drug development. Various potential antilithogenic agents have been identified using this model, including new chemical compounds and medicinal plants. The fruit fly kidney stone models also afford opportunities to study the therapeutic mechanism of these drugs in deeper.

3.
Mycopathologia ; 182(11-12): 1037-1043, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28836110

RESUMEN

Scedosporium and Lomentospora species are the second most frequent colonizing, allergenic, or invasive fungal pathogens in patients with cystic fibrosis, and are responsible for infections varying from cutaneous and subcutaneous tissue infections caused by traumatic inoculation to severe systemic diseases in immunocompromised patients. The clinical relevance of fungal airway colonization for individual patients harboring Scedosporium and Lomentospora species is still an underestimated issue. The high resistance of Scedosporium and Lomentospora species to antifungal drugs has highlighted the need for alternative treatment modalities, and antimicrobial photodynamic therapy may be one such alternative. In this study, methylene blue was applied as a photosensitizing agent to 6 type strains of Scedosporium and Lomentospora species, and we irradiated the strains using a light-emitting diode (635 ± 10 nm, 12 J/cm2). We evaluated the effects of photodynamic therapy on strain growth and on the in vitro susceptibility of the strains to itraconazole, voriconazole, posaconazole, and amphotericin B. A colony-forming unit reduction of up to 5.2 log10 was achieved. Minimal inhibitory concentration ranges also decreased significantly with photoinactivation. Photodynamic therapy improved both the inactivation rates and the antifungal susceptibility profile of all fungal isolates tested.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Ascomicetos/crecimiento & desarrollo , Itraconazol/farmacología , Fotoquimioterapia/métodos , Scedosporium/crecimiento & desarrollo , Triazoles/farmacología , Voriconazol/farmacología , Ascomicetos/clasificación , Ascomicetos/efectos de los fármacos , Humanos , Huésped Inmunocomprometido , Azul de Metileno/farmacología , Pruebas de Sensibilidad Microbiana , Fármacos Fotosensibilizantes/farmacología , Scedosporium/clasificación , Scedosporium/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA