Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Gut Microbes ; 16(1): 2316575, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38381494

RESUMEN

Intestinal microbiota dysbiosis and metabolic disruption are considered essential characteristics in inflammatory bowel disorders (IBD). Reasonable butyrate supplementation can help patients regulate intestinal flora structure and promote mucosal repair. Here, to restore microbiota homeostasis and butyrate levels in the patient's intestines, we modified the genome of Saccharomyces cerevisiae to produce butyrate. We precisely regulated the relevant metabolic pathways to enable the yeast to produce sufficient butyrate in the intestine with uneven oxygen distribution. A series of engineered strains with different butyrate synthesis abilities was constructed to meet the needs of different patients, and the strongest can reach 1.8 g/L title of butyrate. Next, this series of strains was used to co-cultivate with gut microbiota collected from patients with mild-to-moderate ulcerative colitis. After receiving treatment with engineered strains, the gut microbiota and the butyrate content have been regulated to varying degrees depending on the synthetic ability of the strain. The abundance of probiotics such as Bifidobacterium and Lactobacillus increased, while the abundance of harmful bacteria like Candidatus Bacilloplasma decreased. Meanwhile, the series of butyrate-producing yeast significantly improved trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice by restoring butyrate content. Among the series of engineered yeasts, the strain with the second-highest butyrate synthesis ability showed the most significant regulatory and the best therapeutic effect on the gut microbiota from IBD patients and the colitis mouse model. This study confirmed the existence of a therapeutic window for IBD treatment by supplementing butyrate, and it is necessary to restore butyrate levels according to the actual situation of patients to restore intestinal flora.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Saccharomyces cerevisiae/genética , Butiratos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Disbiosis , Suplementos Dietéticos
2.
Curr Issues Mol Biol ; 43(2): 687-703, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34287263

RESUMEN

Cellulases have been used to extract bioactive ingredients from medical plants; however, the poor enzymatic properties of current cellulases significantly limit their application. Two strategies are expected to address this concern: (1) new cellulase gene mining strategies have been promoted, optimized, and integrated, thanks to the improvement of gene sequencing, genomic data, and algorithm optimization, and (2) known cellulases are being modified, thanks to the development of protein engineering, crystal structure data, and computing power. Here, we focus on mining strategies and provide a systemic overview of two approaches based on sequencing and function. Strategies based on protein structure modification, such as introducing disulfide bonds, proline, salt bridges, N-glycosylation modification, and truncation of loop structures, have already been summarized. This review discusses four aspects of cellulase-assisted extraction. Initially, cellulase alone was used to extract bioactive substances, and later, mixed enzyme systems were developed. Physical methods such as ultrasound, microwave, and high hydrostatic pressure have assisted in improving extraction efficiency. Cellulase changes the structure of biomolecules during the extraction process to convert them into effective ingredients with better activity and bioavailability. The combination of cellulase with other enzymes and physical technologies is a promising strategy for future extraction applications.


Asunto(s)
Celulasas/química , Minería de Datos , Ingeniería de Proteínas , Celulasas/genética , Celulasas/aislamiento & purificación , Celulasas/metabolismo , Fraccionamiento Químico/métodos , Biología Computacional/métodos , Minería de Datos/métodos , Estabilidad de Enzimas , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Plantas Medicinales/química , Plantas Medicinales/enzimología , Plantas Medicinales/genética , Ingeniería de Proteínas/métodos , Relación Estructura-Actividad
3.
Artículo en Inglés | MEDLINE | ID: mdl-34058528

RESUMEN

Xian-Ling-Gu-Bao capsule (XLGB) has been proven to prevent and treat osteoporosis. However, as a long-term oral formula, XLGB's effects on the metabolic capacity, structure and function of gut microbiota have yet to be elucidated in ovariectomized (OVX) rats. Our objectives were to evaluate the capacity of gut microbiota for metabolizing XLGB ingredients and to assess the effect of this prescription on gut microbiota. Herein, an integrated analysis that combined ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultrahigh-performance liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-TQD-MS) was conducted to determine the metabolic capacity of gut microbiota. The effects of XLGB on gut microbiota were explored by metagenomic sequencing in OVX rats. Fecal samples from each group were collected after intragastric administration for three months. In total, 64 biotransformation products were fully characterized with rat gut microbiota from the OVX group and the XLGB group. The deglycosylation reaction was the main biotransformation pathway in core structures in the group that was incubated with XLGB. Compared with the OVX group, different biotransformation products and pathways of the XLGB group after incubation for 2 h and 8 h were described. After three months of feeding with XLGB, the domesticated gut microbiota was conducive to the production of active absorbed components via deglycosylation, such as icaritin, psoralen and isopsoralen. Comparisons of the gut microbiota of the OVX and XLGB groups showed differences in the relative abundances of the two dominant bacterial divisions, namely, Firmicutes and Bacteroidetes. The proportion of Firmicutes was significantly lower and that of Bacteroidetes was significantly higher in the XLGB group. This result demonstrated that XLGB could provide a basis for the treatment of osteoporosis by regulating lipid and bile acid metabolism. In addition, the increase in Lactobacillus, Bacteroides and Prevotella could be an important factor that led to easier production of active absorbed aglycones in the XLGB group. Our observation provided further evidence of the importance of gut microbiota in the metabolism and potential activity of XLGB.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ovariectomía , Animales , Cromatografía Líquida de Alta Presión/métodos , Femenino , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
4.
J Chromatogr Sci ; 58(6): 494-503, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32236407

RESUMEN

Xian-Ling-Gu-Bao (XLGB), a famous traditional Chinese medicine prescription consisted of six herbal medicines, was used for prevention and treatment of osteoporosis in China. As an oral formulation, the multiple components contained in XLGB were inevitably biotransformed by the intestinal microflora before absorption via the gastrointestinal tract. However, the dynamic profiles of biotransformation products of XLGB remain unknown. In this paper, a rapid and sensitive ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry method was developed for the simultaneous quantitative analysis of multiple biotransformation products of XLGB with rat intestinal microflora. For 10 selected quantitative compounds, all calibration curves revealed good linearity (r2 > 0.99) within the sampling ranges considered. The whole intra- and inter-day precisions (as relative standard deviation) of all analytes were <13.5%, and the accuracies (as relative error) were in the range from -11.3 to 11.2%. The lower limits of quantification were 20, 10, 5, 20, 2, 2, 2, 5, 2 and 2 ng/mL for sweroside, timosaponin BII, epimedin C, asperosaponin VI, psoralen, isobavachin, icariside II, timosaponin AIII, isobavachalcone and icaritin, respectively. The matrix effects, extraction recoveries and stabilities were all satisfactory. Meanwhile, dynamic profiles of 21 additional biotransformation products were also monitored by their area-time curves. The analytical method was successfully applied to describe dynamic profiles of 31 biotransformation products of XLGB and the recipes with removal of a definite composed herbal medicine (Anemarrhenae Rhizoma or Rehmanniae Radix).


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal/fisiología , Espectrometría de Masas en Tándem/métodos , Animales , Biotransformación , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Heces/microbiología , Límite de Detección , Modelos Lineales , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
5.
J Pharm Biomed Anal ; 177: 112836, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31473481

RESUMEN

Xian-Ling-Gu-Bao capsule (XLGB) is an effective traditional Chinese medicine prescription (TCMP) that is used for the prevention and treatment of osteoporosis in China. A rapid, simple, efficient and stable method based on UPLC-MS/MS technology was developed for simultaneous determination of multiple components of XLGB in rat plasma. Mass spectrometric detection was performed in multiple reaction monitoring (MRM) mode with electrospray ionization (ESI). For twenty-one selected quantitative prototypes, all calibration curves showed favourable linearity (r>0.9932) in linear ranges. The lower limits of quantification (LLOQs) were 2 ng/mL for psoralen (PL), 2.5 ng/mL for asperosaponin VI (AS), 1 ng/mL for isopsoralen (IPS) and sweroside (SW), 0.5 ng/mL for magnoflorine (MA), bavachinin (BVN), tanshinone IIA (TA), timosaponin BII (TBII) and icaritin (ICT), 0.1 ng/mL for epimedin B (EB) and epimedin C (EC), 0.05 ng/mL for icariin (IC), isobavachalcone (IBC), psoralidin (PD), bavachin (BV), bavachalcone (BC), epimedin A (EA) and isobavachin (IBV), 0.02 ng/mL for neobavaisoflavone (NEO) and icariside I (ICI) and 0.01 ng/mL for icariside II (ICII). The intra-day and inter-day (low, medium, high) precision (relative standard deviation) for all analytes was less than 8.63%, and the accuracies (as relative error) were in the range of -12.45% to 8.91%. Extraction recoveries and matrix effects of analytes and IS were acceptable. All analytes were stable during the assay and storage in plasma samples. The validated method was successfully applied to the pharmacokinetics (PK) studies of the twenty-one prototypes at pharmacodynamic doses (0.3 and 1 g/kg/day). In addition, dynamic profiles of 28 metabolites (phase II conjugates: 23 glucuronide conjugates, 2 sulfate conjugates and 3 glucuronide or sulfate conjugates) were also monitored by their area/IS area-time curves. As a result, coumarins, prenylated flavonoids from Psoraleae Fructus, alkaloids and prenylated flavonol glycosides from Epimedii Herba, and iridoid glycosides, triterpenoid saponins from Dipsaci Asperoidis Radix were considered to be the key effective substances of XLGB due to their high exposure and appropriate pharmacokinetic features. This is the first report to reveal pharmacodynamic ingredients by a reversed pharmacodynamic (PD) - pharmacokinetics (PK) study.


Asunto(s)
Medicamentos Herbarios Chinos/farmacocinética , Espectrometría de Masas en Tándem/métodos , Administración Oral , Animales , Aporfinas/administración & dosificación , Aporfinas/sangre , Aporfinas/farmacocinética , Cápsulas , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/análisis , Femenino , Ficusina/administración & dosificación , Ficusina/sangre , Ficusina/farmacocinética , Flavonoides/administración & dosificación , Flavonoides/sangre , Flavonoides/farmacocinética , Furocumarinas/administración & dosificación , Furocumarinas/sangre , Furocumarinas/farmacocinética , Glucósidos Iridoides/administración & dosificación , Glucósidos Iridoides/sangre , Glucósidos Iridoides/farmacocinética , Modelos Animales , Ratas , Saponinas/administración & dosificación , Saponinas/sangre , Saponinas/farmacocinética
6.
Artículo en Inglés | MEDLINE | ID: mdl-29787993

RESUMEN

Qi-Li-Qiang-Xin capsule (QLQX), a well-known traditional Chinese medicine prescription (TCMP), is consisted of eleven commonly used herbal medicines, has been widely used for the treatment of chronic heart failure (CHF). However, the absorbed components and related metabolites after oral administration of QLQX are still remaining unknown. In the present work, a reliable and effective method using ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS) was established to identify QLQX-related xenobiotics in rats. Based on a representative structure based homologous xenobiotics identification (RSBHXI) strategy, a total of eleven compounds (salvianolic acid B, formononetin, benzoylmesaconine, alisol A, sinapine thiocyanate, naringin, tanshinone IIA, ginsenoside Rg1, ginsenoside Rb1, astragaloside IV and periplocin), bearing different chemical core structures, were selected and investigated for their metabolism in vivo. And then, comprehensive metabolic profiles of the holistic multi-ingredients in QLQX were achieved. As a result, a total of 121 QLQX-related xenobiotics (47 prototypes and 74 metabolites) were identified or tentatively characterized, among them eight prototypes (mesaconine, hypaconine, songorine, fuziline, neoline, talatizamine formononetin, neocryptotanshinone) and two metabolites (calycosin-gluA, formononetin-guA) were relatively the main existing xenobiotics exposed in blood. All absorbed prototype constituents were mainly from six composed herbal medicines (Aconiti lateralis radix, Astragali radix, Ginseng radix, Alismatis rhizoma, Salvia miltiorrhiza radix, Periploca cortex). The main metabolic reactions were methylation, hydrogenation, hydroxylation, oxidization, sulfation and glucuronidation. This is the first study on in vivo metabolism of QLQX. These results enabled us to focus on several high exposure ingredients in the discovery of effective substances of QLQX, however further pharmacokinetic study on these QLQX-related xenobiotics are needed to be carried out.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/farmacocinética , Espectrometría de Masas en Tándem/métodos , Xenobióticos/análisis , Xenobióticos/farmacocinética , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/metabolismo , Heces/química , Masculino , Ratas , Ratas Sprague-Dawley , Xenobióticos/química , Xenobióticos/metabolismo
7.
Biomed Chromatogr ; 32(4)2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29226353

RESUMEN

Xian-Ling-Gu-Bao capsule (XLGB), a well-known traditional Chinese medicine prescription, has been used for the prevention and treatment of osteoporosis. The safety and efficacy of XLGB have been confirmed based on the principle of evidence-based medicine. XLGB is usually administered orally, after which its multiple components are brought into contact with intestinal microflora in the alimentary tract and biotransformed. However, investigations on the comprehensive metabolic profile of XLGB are absent. In this study, 12 representative compounds bearing different typical structures (including iridoid glycosides, prenylated flavonol glycosides, prenylated flavonoids, triterpenoid saponins, steroidal saponins, coumarins and monoterpene phenols) were selected and then investigated for their biotransformation in rat intestinal microflora. In addition, the metabolic profile of XLGB in rat intestinal microflora was investigated by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. As a result, a total of 87 biotransformation components were identified from incubated solutions of 12 representative compounds and XLGB, which underwent 16 metabolic reactions (including deglycosylation, glycosylation, dehydrogenation, hydrogenation, oxidation, epoxidation, hydroxylation, dehydration, hydration, hydrolysis, methylation, isomerization, cyclization, pyrolysis reaction, amino acid conjugation and nucleophilic addition reaction with NH3 ). This demonstrated that the deglycosylation reaction by cleavage of the sugar moieties is the main metabolic pathway of a variety of glycosides, including prenylated flavonol glycosides, coumarin glycosides, iridoid glycosides and saponins. In addition, compared with the biotransformation of 12 representative compounds, a different biotransformed fate was observed in the XLGB incubated samples of rat intestinal microflora. It is worth noting that the amino acid conjugation was first discovered in the metabolism of prenylated flavonol glycosides in rat intestinal microflora.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/metabolismo , Microbioma Gastrointestinal/fisiología , Metaboloma/fisiología , Espectrometría de Masas en Tándem/métodos , Animales , Biotransformación , Medicamentos Herbarios Chinos/química , Glicósidos/análisis , Glicósidos/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley , Saponinas/análisis , Saponinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA