Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Pediatr ; 24(1): 255, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627752

RESUMEN

BACKGROUND: Physiological processes rely on phosphate, which is an essential component of adenosine triphosphate (ATP). Hypophosphatasia can affect nearly every organ system in the body. It is crucial to monitor newborns with risk factors for hypophosphatemia and provide them with the proper supplements. We aimed to evaluate the risk factors and develop a nomogram for early hypophosphatemia in term infants. METHODS: We conducted a retrospective study involving 416 term infants measured serum phosphorus within three days of birth. The study included 82 term infants with hypophosphatemia (HP group) and 334 term infants without hypophosphatemia (NHP group). We collected data on the characteristics of mothers, newborn babies, and childbirth. Furthermore, univariate and multivariate logistic regression analyses were performed to identify independent risk factors for hypophosphatemia in term infants, and a nomogram was developed and validated based on the final independent risk factors. RESULTS: According to our analysis, the multivariate logistic regression analysis showed that male, maternal diabetes, cesarean delivery, lower serum magnesium, and lower birth weight were independent risk factors for early hypophosphatemia in term infants. In addition, the C-index of the developed nomogram was 0.732 (95% CI = 0.668-0.796). Moreover, the calibration curve indicated good consistency between the hypophosphatemia diagnosis and the predicted probability, and a decision curve analysis (DCA) confirmed the clinical utility of the nomogram. CONCLUSIONS: The analysis revealed that we successfully developed and validated a nomogram for predicting early hypophosphatemia in term infants.


Asunto(s)
Hipofosfatasia , Hipofosfatemia , Recién Nacido , Lactante , Femenino , Embarazo , Masculino , Humanos , Nomogramas , Estudios Retrospectivos , Hipofosfatemia/diagnóstico , Hipofosfatemia/etiología , Adenosina Trifosfato
2.
Front Neurosci ; 17: 1097477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845424

RESUMEN

Objective: Traditional Chinese Medicine (TCM) has considerable experience in the treatment of cerebral palsy (CP), but little evidence shows the effect of a combination of TCM and modern rehabilitation therapies on CP. This systematic review aims to evaluate the effect of integrated TCM and modern rehabilitation therapies on motor development in children with CP. Methods: We systematically searched five databases up to June 2022, including PubMed, the Cumulative Index to Nursing and Allied Health, Cochrane Library, Embase, and Web of Science. Gross motor function measure (GMFM) and Peabody Development Motor Scales-II were the primary outcomes to evaluate motor development. Secondary outcomes included the joint range of motion, the Modified Ashworth scale (MAS), the Berg balance scale, and Activities of Daily living (ADL). Weighted mean differences (WMD) and 95% confidence intervals (CIs) were used to determine intergroup differences. Results: A total of 2,211 participants from 22 trials were enrolled in this study. Among these, one study was at a low risk of bias and seven studies showed a high risk of bias. Significant improvements were found in GMFM-66 (WMD 9.33; 95% CI 0.14-18.52, P < 0.05, I 2 = 92.1%), GMFM-88 (WMD 8.24; 95% CI 3.25-13.24, P < 0.01, I 2 = 0.0%), Berg balance scale (WMD 4.42; 95% CI 1.21-7.63, P < 0.01, I 2 = 96.7%), and ADL (WMD 3.78; 95% CI 2.12-5.43, P < 0.01, I 2 = 58.8%). No adverse events were reported during the TCM intervention in the included studies. The quality of evidence was high to low. Conclusion: Integrated TCM and modern rehabilitation therapies may be an effective and safe intervention protocol to improve gross motor function, muscle tone, and the functional independence of children with CP. However, our results should be interpreted carefully because of the heterogeneity between the included studies. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42022345470.

3.
Bioresour Technol ; 370: 128581, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36608857

RESUMEN

The potential of palm oil and derived wastewater pretreated by enzyme as co-substrates to accumulate polyhydroxyalkanoate (PHA) rich in short and medium-chain-length monomers under two feeding strategies was evaluated batchwise through mixed microbial cultures (MMCs) in activated sludge. A terpolymer with the maximum PHA content of 30.5 wt%, volumetric yield of 0.372 g COD/g COD and composition of ca. 84.7 âˆ¼ 97.4/0.5 âˆ¼ 1.6/2.1 âˆ¼ 13.7 (3-hydroxybutyrate/ 3-hydroxyvalerate/ 3-hydroxyoctanoate, %) was achieved as a result of co-substrate incorporation. From the perspective of economic benefits, PHA accumulated via adopting strategy of supplementing carbon source to the same initial concentration per cycle saved 42.7 % of carbon consumption, along with a reduction in culture time (72 h). The above discoveries signify that the combination of palm oil and derived wastewater plus MMCs provides an alternative to the plastics industries for a more sustainable and efficient utilization of biological resources and an economic PHA accumulation approach.


Asunto(s)
Polihidroxialcanoatos , Aguas Residuales , Aguas del Alcantarillado , Polihidroxialcanoatos/metabolismo , Aceite de Palma , Reactores Biológicos
4.
Plant Dis ; 105(9): 2585-2594, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33404272

RESUMEN

Soft rot bacteria classified in the Pectobacteriaceae (SRP), including Pectobacterium and Dickeya spp., are responsible for soft rot and blackleg diseases of potato. Since 2014, blackleg outbreaks caused by D. dianthicola have increased in the United States and Canada. Our previous study found that the most abundant causal organisms of blackleg disease in New York State were P. parmentieri and D. dianthicola, with the latter being the only Dickeya species reported. In the present study, we identified and characterized pathogenic SRP bacteria from 19 potato samples collected in New York State during the 2017 growing season. We used genome sequence comparison to determine the pathogens' species. We found eight P. versatile, one P. atrosepticum, two P. carotovorum, two P. parmentieri, and six D. dianthicola isolates in our 2017 SRP collection. This is the first time that P. versatile has been reported to cause potato blackleg disease in New York State. We determined the phylogenetic relationships between the SRP strains by using 151 single-copy orthologous gene sequences shared among the set of bacteria in our analysis, which provided better resolution than phylogenies constructed with the dnaX gene.


Asunto(s)
Pectobacterium , Solanum tuberosum , New York , Pectobacterium/genética , Filogenia , Enfermedades de las Plantas , Estados Unidos
5.
Int J Syst Evol Microbiol ; 68(4): 1012-1017, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29458482

RESUMEN

A Gram-stain-negative, non-motile, non-spore-forming bacterium, designated MLS-26-JM13-11T, was isolated from potato stems, collected in Guyuan County, Hebei Province, China. Strain MLS-26-JM13-11T could grow at 10-39 °C (optimum, 30 °C), pH 6.0-9.0 (optimum, pH 7.2) and in the presence of 0-4.0 % (w/v) NaCl (optimum, 1.0 % w/v). Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain MLS-26-JM13-11T formed a stable clade with Sphingobacterium bambusae IBFC2009T and Sphingobacterium griseoflavum SCU-B140T, with the 16S rRNA gene sequence similarities ranging from 95.9 % to 97.0 %. The major cellular fatty acids comprised iso-C15 : 0 (36.9 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 34.0 %), C16 : 0 (3.0 %) and iso-C17 : 0 3-OH (13.4 %). Strain MLS-26-JM13-11T contained sphingoglycolipid, phosphatidyl ethanolamine, six unknown lipids, one unknown aminolipid, four unknown polarlipids and two unknown aminophospholipids. The isoprenoid quinone was MK-7. The DNA G+C content was 42.6 mol%. Furthermore, the average nucleotide identity and in silico estimated DNA-DNA reassociation values among MLS-26-JM13-11T and S. bambusae KCTC 22814T were in all cases below the respective threshold for species differentiation. On the basis of phenotypic, genotypic and phylogenetic evidence, strain MLS-26-JM13-11T (=ACCC 60057T=JCM 32274T) represents a novel species within the genus Sphingobacterium, for which the name Sphingobacterium solani sp. nov. is proposed.


Asunto(s)
Filogenia , Solanum tuberosum/microbiología , Sphingobacterium/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , Tallos de la Planta/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sphingobacterium/genética , Sphingobacterium/aislamiento & purificación , Vitamina K 2/química
6.
Amino Acids ; 44(2): 461-72, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22782217

RESUMEN

Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR(1-72) mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.


Asunto(s)
Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Péptidos/metabolismo , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/fisiopatología , Ratones , Péptidos/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
7.
J Phys Condens Matter ; 25(3): 036004, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23234679

RESUMEN

By generalizing the equation of motion method, we can analytically solve the spin wave excitations for the intercalated ternary iron-selenide AFe(1.5)Se(2) (A = K, Tl) in a complex 4 × 2 collinear antiferromagnetic order. It is found that there are one acoustic branch (gapless Goldstone mode) and two gapful optical branches of spin wave excitations with each in double degeneracy. By examining the non-imaginary excitation frequency condition, we can determine the corresponding phase boundary. The exchange couplings between Fe moments in AFe(1.5)Se(2) are derived based on the first-principles total energy calculations. The Fe spin is found to be S = 3/2 through computing the antiferromagnetic quantum fluctuation. It is also found that a very small spin-orientation anisotropy can remarkably suppress the antiferromagnetic quantum fluctuation. The spin dynamical structure factors are calculated and discussed in association with neutron inelastic scattering experiment.


Asunto(s)
Electrones , Compuestos Ferrosos/química , Magnetismo , Teoría Cuántica , Selenio/química , Marcadores de Spin , Anisotropía , Cristalografía por Rayos X , Conductividad Eléctrica , Modelos Moleculares , Termodinámica
8.
J Exp Bot ; 63(10): 3727-40, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22442419

RESUMEN

Seed yield and oil content are two important agricultural characteristics in oil crop breeding, and a lot of functional gene research is being concentrated on increasing these factors. In this study, by differential gene expression analyses between rapeseed lines (zy036 and 51070) which exhibit different levels of seed oil production, BnGRF2 (Brassica napus growth-regulating factor 2-like gene) was identified in the high oil-producing line zy036. To elucidate the possible roles of BnGRF2 in seed oil production, the cDNA sequences of the rapeseed GRF2 gene were isolated. The Blastn result showed that rapeseed contained BnGRF2a/2b which were located in the A genome (A1 and A3) and C genome (C1 and C6), respectively, and the dominantly expressed gene BnGRF2a was chosen for transgenic research. Analysis of 35S-BnGRF2a transgenic Arabidopsis showed that overexpressed BnGRF2a resulted in an increase in seed oil production of >50%. Moreover, BnGRF2a also induced a >20% enlargement in extended leaves and >40% improvement in photosynthetic efficiency because of an increase in the chlorophyll content. Furthermore, transcriptome analyses indicated that some genes associated with cell proliferation, photosynthesis, and oil synthesis were up-regulated, which revealed that cell number and plant photosynthesis contributed to the increased seed weight and oil content. Because of less efficient self-fertilization induced by the longer pistil in the 35S-BnGRF2a transgenic line, Napin-BnGRF2a transgenic lines were further used to identify the function of BnGRF2, and the results showed that seed oil production also could increase >40% compared with the wild-type control. The results suggest that improvement to economically important characteristics in oil crops may be achieved by manipulation of the GRF2 expression level.


Asunto(s)
Brassica napus/metabolismo , Fotosíntesis , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/citología , Regulación hacia Arriba , Secuencia de Aminoácidos , Brassica napus/química , Brassica napus/citología , Brassica napus/genética , Recuento de Células , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Semillas/química , Semillas/genética , Semillas/metabolismo , Alineación de Secuencia
9.
Plant J ; 69(3): 432-44, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21954986

RESUMEN

Seed oil content is an important agronomic trait in rapeseed. However, our understanding of the regulatory processes controlling oil accumulation is still limited. Using two rapeseed lines (zy036 and 51070) with contrasting oil content, we found that maternal genotype greatly affects seed oil content. Genetic and physiological evidence indicated that difference in the local and tissue-specific photosynthetic activity in the silique wall (a maternal tissue) was responsible for the different seed oil contents. This effect was mimicked by in planta manipulation of silique wall photosynthesis. Furthermore, the starch content and expression of the important lipid synthesis regulatory gene WRINKLED1 in developing seeds were linked with silique wall photosynthetic activity. 454 pyrosequencing was performed to explore the possible molecular mechanism for the difference in silique wall photosynthesis between zy036 and 51070. Interestingly, the results suggested that photosynthesis-related genes were over-represented in both total silique wall expressed genes and genes that were differentially expressed between genotypes. A potential regulatory mechanism for elevated photosynthesis in the zy036 silique wall is proposed on the basis of knowledge from Arabidopsis. Differentially expressed ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-related genes were used for further investigations. Oil content correlated closely with BnRBCS1A expression levels and Rubisco activities in the silique wall, but not in the leaf. Taken together, our results highlight an important role of silique wall photosynthesis in the regulation of seed oil content in terms of maternal effects.


Asunto(s)
Brassica napus/genética , Flores/fisiología , Fotosíntesis/fisiología , Aceites de Plantas/química , Semillas/química , Brassica napus/fisiología , Etiquetas de Secuencia Expresada , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Genes de Plantas , Genotipo , ARN de Planta/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Análisis de Secuencia de ADN , Almidón/biosíntesis , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA