Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Apoptosis ; 21(12): 1398-1407, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27671687

RESUMEN

Oxymatrine (OMT), one of the main active components of extracts from the dry roots of Sophora flavescens, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects. The aim of the present study is to explore the efficiency of combination therapy with OMT and oxaliplatin (OXA) and identify the in vitro and in vivo cytotoxicity on colon cancer lines (HT29 and SW480) and mice model. Cells were treated with OMT and/or OXA and subjected to cell viability, colony formation, apoptosis, cell cycle, western blotting, xenograft tumorigenicity assay and immunohistochemistry. The results demonstrated that OMT and OXA inhibited the proliferation of colon cancer cells, and combination therapy of OMT and OXA resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with OMT and OXA caused G0/G1 phase arrest by upregulating P21, P27 and downregulating cyclin D, and induced apoptosis through decreasing the expression of p-PI3K, p-AKT, p-mTOR, p-p70S6K. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of OXA + OMT, demonstrating the important role of PI3K/AKT in this process. Moreover, in nude mice model, co-treatment displayed more efficient inhibition of tumor weight and volume on SW480 xenograft mouse model than single-agent treatment with OXA or OMT. Immunohistochemistry analysis suggests the combinations greatly suppressed tumor proliferation, which consistent with our in vitro results. In conclusion, our findings highlight that the combination therapy with OMT and OXA exerted synergistic antitumor effects in colon cancer cells through PI3K/AKT/mTOR pathway and combination treatment with OMT and OXA would be a promising therapeutic strategy for colon carcinoma treatment.


Asunto(s)
Alcaloides/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Compuestos Organoplatinos/administración & dosificación , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Quinolizinas/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Animales , Apoptosis/efectos de los fármacos , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Sinergismo Farmacológico , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxaliplatino , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/genética , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Naunyn Schmiedebergs Arch Pharmacol ; 389(5): 477-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26892272

RESUMEN

Lupeol, a dietary triterpene present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including cancer-preventive and anti-cancer effects in vitro and in vivo. Here, we investigated the anti-cancer efficacy and adjuvant chemotherapy action of lupeol in gastric cancer (GC) cells (SGC7901 and BGC823) and explored the underlying mechanisms. Cells were treated with lupeol and/or 5-fluorouracil (5-Fu) and subjected to cell viability, colony formation, apoptosis, western blot, semiquantitative RT-PCR, and xenograft tumorigenicity assay. Our results showed that lupeol and 5-Fu inhibited the proliferation of SGC7901 and BGC823 cells, and combination treatment with lupeol and 5-Fu resulted in a combination index < 1, indicating a synergistic effect. Co-treatment with lupeol and 5-Fu induced apoptosis through up-regulating the expressions of Bax and p53 and down-regulating the expressions of survivin and Bcl-2. Furthermore, co-treatment displayed more efficient inhibition of tumor weight and volume on BGC823 xenograft mouse model than single-agent treatment with 5-Fu or lupeol. Taken together, our findings highlight that lupeol sensitizes GC to 5-Fu treatment, and combination treatment with lupeol and 5-Fu would be a promising therapeutic strategy for human GC treatment.


Asunto(s)
Antimetabolitos Antineoplásicos , Protocolos de Quimioterapia Combinada Antineoplásica , Fluorouracilo , Triterpenos Pentacíclicos , Neoplasias Gástricas/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Ratones Desnudos , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Tumour Biol ; 37(5): 6307-13, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26628295

RESUMEN

Quercetin (Q), a flavonoid compound, which is obtained in variety of fruits, seeds, and vegetables, has been reported to possess many pharmacological properties including cancer-preventive and anticancer effects. However, studies on the anticancer effects and underlying mechanisms of Q in human hepatocellular carcinoma (HCC) are still limited. The present study is conducted to investigate the anticancer efficacy and adjuvant chemotherapy action of Q in HCC. HCC cell lines HepG2 and SMCC-7721 were treated with different concentrations of Q. The antiproliferative effects of Q were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and the apoptosis and cell cycle dynamics were assessed by flow cytometry; the expression of apoptosis-associated proteins were evaluated by Western blot and immunohistochemistry staining; the tumor growth in vivo was evaluated in a xenograft mouse model. Our results showed that Q effectively inhibited human HCC cell proliferation and induced apoptosis by upregulating the expression of Bad and Bax and downregulating the expression of Bcl-2 and Survivin in vitro. Furthermore, Q obviously inhibited the tumor growth and enhanced the 5-fluorouracil (5-FU) therapeutic efficacy in vitro and in vivo. Taken together, our findings highlight that Q effectively inhibited the growth of tumor and enhanced the sensitivity to thermotherapy, indicating Q is a potential treatment option for HCC.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Fluorouracilo/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Quercetina/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cytotechnology ; 68(1): 123-133, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25037728

RESUMEN

The cytostatic drug from fruits and other plant derived products have acted as a chemotherapeutic agent used in treatment of a wide variety of cancers. Lupeol, a dietary triterpene, present in many fruits and medicinal plants, has been shown to possess many pharmacological properties including anti-cancer effect in both in vitro and in vivo assay systems. However, the cancer proliferative and invasive inhibitory effects and molecular mechanisms on gallbladder carcinoma GBC-SD cells have not been studied. In the present study, GBC-SD cells were treated by lupeol and subjected to methyl thiazolyl tetrazolium analysis, Hoechst 33342 staining, annexin V/propidium iodide double-staining, transwell chamber assay and Western blot analysis. In addition, GBC-SD xenograft tumors were established in male nude BALB/c mice, and lupeol was intravenously administered to evaluate the anti-cancer capacity in vivo. Our results showed that lupeol inhibited the proliferation, migration, invasion and induced apoptosis of GBC-SD cells in a dose-dependent manner in vitro. Furthermore, the expression of p-EGFR, p-AKT and MMP-9 levels were significantly down-regulated. These protein interactions may play a pivotal role in the regulation of apoptosis and invasion. More importantly, our in vivo studies showed that administration of lupeol decreased tumor growth in a dose-dependent manner. Immunohistochemistry analysis demonstrated the down-regulation of p-EGFR and MMP-9 in tumor tissues following lupeol treatment, consistent with the in vitro results. Taken together, our findings indicated that lupeol can induce apoptotic cell death and inhibit the migration as well as invasion of GBC-SD cells. The mechanism may be associated with the suppression of EGFR/MMP-9 signaling. These results might offer a therapeutic potential advantage for human gallbladder carcinoma chemoprevention or chemotherapy.

5.
Technol Cancer Res Treat ; 15(6): NP16-NP24, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26443801

RESUMEN

Lupeol, a dietary triterpene present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including anticancer effect in vitro and in vivo However, the activity of lupeol against osteosarcoma remains unclear. The present study is conducted to investigate the anticancer activity and the underlying mechanisms of lupeol on human osteosarcoma cells (MNNG/HOS and MG-63) in vitro and in vivo MNNG/HOS and MG-63 cells were treated by lupeol and subjected to methyl thiazolyl tetrazolium analysis, Hoechst staining, annexin V/propidium iodide double staining, cell cycle analysis, and Western blot analysis. In addition, MNNG/HOS xenograft tumors were established in female nude BALB/c mice, and lupeol was intravenously administered to evaluate the anticancer capacity in vivo Our results showed that lupeol induced apoptosis as well as cell cycle arrest in G0/G1 phase of MNNG/HOS and MG-63 cells in a dose-dependent manner in vitro Furthermore, the protein expression levels of phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT), p-p70S6K, and cyclin D1 were significantly downregulated, whereas the expression levels of p21 and p27 were upregulated. These protein interactions may play a pivotal role in the regulation of apoptosis and cell cycle arrest. More importantly, our in vivo studies showed that administration of lupeol decreased tumor growth in a dose-dependent manner and has no significant effect on the function of liver and kidney. Taken together, our findings indicated that lupeol can induce apoptosis as well as cell cycle arrest of human osteosarcoma cells through phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway and might offer a promising new approach in the effective treatment of osteosarcoma.

6.
Naunyn Schmiedebergs Arch Pharmacol ; 388(3): 295-304, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25418891

RESUMEN

Lupeol, a dietary triterpene, present in many fruits and medicinal plants, has been reported to possess many pharmacological properties including anti-cancer activities both in vitro and in vivo. However, the precise mechanism involved remains largely unknown. The present study is conducted to investigate the anti-cancer activity and the underlying mechanisms of lupeol on human pancreatic cancer proliferating cell nuclear antigen 1 (PCNA-1) cells in vitro and in vivo. Lupeol significantly inhibited the proliferation of the cells in dose- and time-dependent manners and induced apoptosis as well as cell cycle arrest in G0/G1 phase by upregulating P21 and P27 and downregulating cyclin D1. The expression of apoptosis-related proteins in cells was evaluated by western blot analysis, and we found that lupeol induced cell apoptosis by decreasing the levels of p-AKT and p-ERK. In addition, pretreatment with a specific PI3K/AKT activator (IGF-1) significantly neutralized the pro-apoptotic activity of lupeol in PCNA-1 cells, demonstrating the important role of AKT in this process. More importantly, our in vivo studies showed that administration of lupeol decreased tumor growth in a dose-dependent manner. Immunohistochemistry analysis demonstrated the downregulation of p-AKT and p-ERK in tumor tissues following lupeol treatment, consistent with the in vitro results. Therefore, these findings indicate that lupeol can inhibit cell proliferation and induce apoptosis as well as cell cycle arrest of PCNA-1 cells and might offer a therapeutic potential advantage for human pancreatic cancer chemoprevention or chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Antígeno Nuclear de Célula en Proliferación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA