Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Mater ; 31(46): e1904836, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31566280

RESUMEN

Photothermal therapy triggered by near-infrared light in the second biowindow (NIR-II) has attracted extensive interest owing to its deeper penetration depth of biological tissue, lower photon scattering, and higher maximum permissible exposure. In spite of noble metals showing great potential as the photothermal agents due to the tunable localized surface plasmon resonance, the biological applications of platinum are rarely explored. Herein, a monocomponent hollow Pt nanoframe ("Pt Spirals"), whose superstructure is assembled with three levels (3D frame, 2D layered shells, and 1D nanowires), is reported. Pt Spirals exhibit outstanding photothermal conversion efficiency (52.5%) and molar extinction coefficients (228.7 m2 mol-1 ) in NIR-II, which are much higher than those of solid Pt cubes. Simulations indicate that the unique superstructure can be a significant cause for improving both adsorption and the photothermal effect simultaneously in NIR-II. The excellent photothermal effect is achieved and subsequently verified in in vitro and in vivo experiments, along with superb heat-resistance properties, excellent photostability, and a prominent effect on computed tomography (CT) imaging, demonstrating that Pt Spirals are promising as effective theranostic platforms for CT imaging-guided photothermal therapy.


Asunto(s)
Absorción Fisicoquímica , Rayos Infrarrojos , Nanomedicina/métodos , Fototerapia/métodos , Platino (Metal)/química , Temperatura , Animales , Línea Celular Tumoral , Ratones , Nanoestructuras/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA