Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Biol ; 60(1): 1542-1555, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35944284

RESUMEN

CONTEXT: Jiedutongluotiaogan formula (JTTF), a traditional Chinese medicine (TCM), could promote islet function. However, the potential effect of JTTF on endoplasmic reticulum stress (ERS) and autophagy have not been reported. OBJECTIVE: This study explores the potential effect of JTTF on ERS and autophagy in the pancreas. MATERIALS AND METHODS: The Zucker diabetic fatty (ZDF) rats were randomised into five groups, control, model, JTTF (1, 3, 5 g/kg/day for 12 weeks). LPS induced pancreatic ß-cells were treated with JTTF (50, 100, 200 µg/mL). LPS was used to induce pancreatic ß-cell injury, with cell viability and insulin secretion evaluated using MTT, glucose-stimulated insulin secretion (GSIS) assays, and PCR. Intracellular Ca2+ concentration was measured using flow cytometry, while ERS and autophagy levels were monitored via Western blotting and/or immunostaining. RESULTS: Compared with the model group, body weight, FGB, HbA1c, IPGTT, FINs, and HOMA-IR in JTTF treatment groups were significantly reduced. In islets cells treated with JTTF, the pancreatic islet cells in the JTTF group were increased, lipid droplets were reduced, and there was a decrease in Ca2+ (16.67%). After JTTF intervention, PERK, p-PERK, IRE1α, p- IRE1α, ATF6, eIF2α, GRP78, p-ULK1, LC3 and p62 expression decreased, whereas Beclin1and p-mTOR expression increased. In addition, the expression of proteins related to apoptosis in the JTTF groups were lower than those in the control group. DISCUSSION AND CONCLUSIONS: JTTF may alleviate pancreatic ß-cell injury by inhibiting ER stress and excessive autophagy in diabetic rats. This provides a new direction for treating diabetes and restoring pancreatic dysfunction by TCM.


Asunto(s)
Diabetes Mellitus Experimental , Estrés del Retículo Endoplásmico , Animales , Apoptosis , Autofagia , Endorribonucleasas , Lipopolisacáridos/farmacología , Proteínas Serina-Treonina Quinasas , Ratas , Ratas Zucker
2.
Fish Shellfish Immunol ; 128: 50-59, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35843522

RESUMEN

A 70-day feeding trial was conducted to investigate effects of dietary lysolecithin on growth performance, serum biochemical indexes, antioxidant capacity, lipid metabolism and inflammation-related genes expression of juvenile large yellow croaker (Larimichthys crocea) with initial weight of 6.04 ± 0.08 g. A formulated diet containing approximately 42% crude protein and 12.5% crude lipid was used as the control diet (CON). The other three experimental diets were formulated with supplementation of 0.2%, 0.4% and 0.6% lysolecithin based on the control diet, respectively. Results showed that weight gain rate (WGR) and specific growth rate (SGR) significantly increased in fish fed diets with lysolecithin compared with those in the control diet (P < 0.05). Fish fed diets with 0.4% and 0.6% lysolecithin had notably higher lipid content in muscle than that in the control diet (P < 0.05). When fish were fed diets with lysolecithin, serum high-density lipoprotein cholesterol (HDL-c) content was notably higher than that in the control diet (P < 0.05), while fish fed the diet with 0.6% lysolecithin had a significant lower serum low-density lipoprotein cholesterol (LDL-c) content than that in the control diet (P < 0.05). Meanwhile, serum aspartate transaminase (AST) and alanine transaminase (ALT) activities in fish fed diets with lysolecithin were remarkably lower than those in the control diet (P < 0.05). With the increase of dietary lysolecithin from 0.2% to 0.6%, mRNA expression of stearoyl-coenzyme A desaturase 1 (scd1), diacylglycerol acyltransferase 2 (dgat2) and sterol-regulatory element binding protein 1 (srebp1) showed decreasing trends. Furthermore, mRNA expression of carnitine palmitoyl transferase 1 (cpt1) and lipoprotein lipase (lpl) among each dietary lysolecithin treatment were significantly higher than those in the control diet (P < 0.05). In terms of inflammation, mRNA expression of tumor necrosis factor α (tnf-α) and interleukin-1 ß (il-1ß) were significantly down-regulated in fish fed diets with lysolecithin compared with those in the control diet (P < 0.05), while the mRNA expression of interleukin-10 (il-10) was significantly higher than that in the control diet (P < 0.05). In conclusion, dietary lysolecithin could promote the growth performance, improve hepatic lipid metabolism and regulate inflammation response in juvenile large yellow croaker, and the optimal supplement level of lysolecithin was approximately 0.4% in this study.


Asunto(s)
Metabolismo de los Lípidos , Perciformes , Alanina Transaminasa/metabolismo , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Aspartato Aminotransferasas/metabolismo , Carnitina/metabolismo , LDL-Colesterol/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Dieta/veterinaria , Suplementos Dietéticos , Ácido Graso Desaturasas/metabolismo , Inflamación/veterinaria , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Lipoproteína Lipasa , Lipoproteínas HDL , Lisofosfatidilcolinas/metabolismo , Perciformes/metabolismo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Aging (Albany NY) ; 13(21): 24290-24312, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740995

RESUMEN

Type 2 diabetes mellitus (T2DM), a chronic low-grade inflammatory disease with high morbidity and mortality, is a serious threat to public health. Previously we demonstrated that a traditional Chinese medicine formulation, Jiedu Tongluo Tiaogan Formula (JDTL), exerted a favorable hypoglycemic effect due to unknown molecular mechanisms involving interactions among JDTL compounds and various cellular components. This study aimed to explore JDTL mechanisms for alleviating hyperglycemia using an integrated strategy incorporating system pharmacology, bioinformatics analysis, and experimental verification. This strategy entailed initial elucidation of JDTL chemical composition using fingerprint analysis via high performance liquid chromatography (HPLC). Next, functions of putative shared target genes and associated pathways were deduced using GO and KEGG pathway enrichment and molecular docking analyses. Ultimately, targets associated with JTDL anti-T2DM effects were found to be functionally associated with biological functions related to lipopolysaccharide and cytokine receptor binding. These results implicated PI3K-Akt signaling pathway involvement in JDTL anti-T2DM effects, as this pathway had been previously shown to play significant roles in glucose and lipid metabolism-related diseases. Furthermore, addition of JDTL to INS-1 and HepG2 cell cultures stimulated cellular mRNA-level and protein-level expression leading to enhanced production of IRS1, Akt, and PI3K. In summary, here JDTL bioactive ingredients, potential targets, and molecular mechanisms underlying JDTL anti-T2DM effects were identified using a multi-component, multi-target, and multi-channel analytical approach, thus providing an important scientific foundation to facilitate development of new drugs mechanistic strategies for preventing and treating T2DM.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Farmacología en Red/métodos , Diabetes Mellitus Tipo 2/metabolismo , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Mapas de Interacción de Proteínas/efectos de los fármacos
4.
Fish Shellfish Immunol ; 107(Pt B): 529-536, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33152403

RESUMEN

As a lipid mediator with important immune function, prostaglandin E2 (PGE2) has been widely studied in mammals, whereas its synthetic pathway and immune function in fish have yet to be fully studied. To investigate the regulation of PGE2 synthetic pathway and inflammatory genes expression by dietary different oils and the underlying relationship, a 10-week feeding experiment and an immune challenge were carried out in marine fish Larimichthys crocea. Replacement of dietary fish oil (FO) with four vegetable oils (VO), including soybean oil, linseed oil, palm oil, and olive oil, all reduced PGE2 levels, and the decrease of arachidonic acid (ARA, substrate for PGE2) could account for this decline. Meanwhile, the expression of PGE2 synthesis related genes was basically upregulated, which seemed to be a feedback regulation, but it cannot compensate the deficiency of ARA. In addition, mRNA expression of inflammatory genes, including interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)α and interferon (IFN)γ was all upregulated in four VO groups compared with FO group, which was the opposite of PGE2 levels. To verify the inflammatory regulation of PGE2, an immune challenge was conducted, and PGE2 alleviated LPS-induced expression of inflammatory genes, including IL-6, TNFα and IFNγ, and the similar downregulation of toll-like receptor (TLR) genes expression revealed that TLR signaling pathway participated in the anti-inflammatory regulation of PGE2. In conclusion, replacement of dietary FO with four VO (lack of ARA) reduced the levels of PGE2 that could alleviate LPS-induced inflammatory genes expression via TLR signaling pathway, which could be one of the reasons that VO induced inflammation in marine fish.


Asunto(s)
Dinoprostona/biosíntesis , Regulación de la Expresión Génica/inmunología , Perciformes/inmunología , Aceites de Plantas/administración & dosificación , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Aceites de Pescado/administración & dosificación , Aceite de Linaza , Aceite de Oliva , Aceite de Palma , Perciformes/genética , Distribución Aleatoria , Aceite de Soja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA