Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0295813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38194422

RESUMEN

OBJECTIVE: To explore their association with the development of diabetes retinopathy (DR), single nucleotide polymorphism (SNP) mutations were screened out by high-throughput sequencing and validated in patients diagnosed with DR. To understand the role of PIK3CA in the pathogenesis of DR and explore the relationship between PIK3CA,phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR),and DR, the effect of PIK3CA.rs17849079 mutation was investigated in a DR cell model. METHODS: Twelve patients diagnosed with DR at the Qinghai Provincial People's Hospital from September 2020 to June 2021 were randomly selected as the case group, while 12 healthy subjects of similar age and gender who underwent physical examination in Qinghai Provincial People's Hospital physical examination center during the same period were randomly selected as the control group. Blood samples (2 mL) were collected from both groups using EDTA anticoagulant blood collection vessels and frozen at -20°C for future analysis. SNP mutations were detected by high-throughput sequencing, and the shortlisted candidates were subjected by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The detected SNP candidates were verified by expanding the sample size (first validation: 56 patients in the case group and 58 controls; second validation: 157 patients in the case group and 96 controls). A lentivirus vector carrying mutated or wild-type PIK3CA.rs17849079 was constructed. ARPE-19 cells were cultured in a medium supplemented with 10% fetal bovine serum (FBS) to establish a DR cell model. PIRES2-PIK3CA-MT and PIRES2-PIK3CA-WT vectors were transfected into DR model cells, which were categorized into control, mannitol, model, empty vector, PIK3CA wild-type, and PIK3CA mutant-type groups. Cell activity was detected by the cell counting kit (CCK)-8 assay, and cellular apoptosis was evaluated by flow cytometry. Glucose concentration and levels of cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1ß were detected using enzyme-linked immunosorbent assay kits. The expression of PIK3CA, AKT1, mTOR, and VEGF genes was detected by real-time quantitative polymerase chain reaction (RT-qPCR), while the expression of PI3K, p-PI3K, AKT1, p-AKT1, mTOR, p-mTOR, and VEGF proteins was detected by western blotting. RESULTS: The mutated SNPs were mainly enriched in the PI3K/AKT pathway, calcium ion pathway, and glutamatergic synaptic and cholinergic synaptic signaling pathways. Seven SNPs, including PRKCE.rs1533476, DNAH11.rs10485983, ERAP1.rs149481, KLHL1.rs1318761, APOBEC3C.rs1969643, FYN.rs11963612, and KCTD1.rs7240205, were not related to the development of DR. PIK3CA.rs17849079 was prone to C/T mutation. The risk of DR increased with the presence of the C allele and decreased in the presence of the T allele. High glucose induced the expression of PIK3CA and VEGF mRNAs as well as the expression of PI3K, p-PI3K, p-AKT1, p-mTOR, and VEGF proteins in ARPE-19 cells, which led to secretion of inflammatory factors TNF-αand IL-1, cell apoptosis, and inhibition of cell proliferation. The PIK3CA.rs17849079 C allele accelerated the progression of DR. These biological effects were inhibited when the C allele of PIK3CA.rs17849079 was mutated to T allele. CONCLUSION: The mutated SNP sites in patients with DR were mainly enriched in PI3K/AKT, calcium ion, and glutamatergic synaptic and cholinergic synaptic signaling pathways. The rs17849079 allele of PIK3CA is prone to C/T mutation where the C allele increases the risk of DR. High glucose activates the expression of PIK3CA and promotes the phosphorylation of PI3K, which leads to the phosphorylation of AKT and mTOR. These effects consequently increase VEGF expression and accelerate the development of DR. The C to T allele mutation in PIK3CA.rs17849079 can play a protective role and reduce the risk of DR.


Asunto(s)
Diabetes Mellitus , Enfermedades de la Retina , Humanos , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Calcio , Factor A de Crecimiento Endotelial Vascular , Fosfatidilinositol 3-Quinasa Clase I/genética , Serina-Treonina Quinasas TOR/genética , Factor de Necrosis Tumoral alfa , Colinérgicos , Glucosa , Aminopeptidasas , Antígenos de Histocompatibilidad Menor
2.
Artículo en Inglés | MEDLINE | ID: mdl-36498118

RESUMEN

Mining activities have led to serious environmental (soil erosion, degradation of vegetation, and groundwater contamination) and human health (musculoskeletal problems, diarrheal conditions, and chronic diseases) issues at desert mining areas in northwest China. Native plant species grown naturally in desert regions show a unique tolerance to arid and semiarid conditions and are potential candidates for soil phytoremediation. Here, an ex situ experiment involving pot planting of seedlings of three native plant species (Suaeda glauca, Artemisia desertorum, and Atriplex canescens) was designed to explore their phytoremediation potential and the underlying physiological mechanism. For Zn and Cu, the three plants were all with a biological accumulation coefficient (BAC) greater than 1. For Cd, Ni, and Pb, Atriplex canescens had the highest bioaccumulation concentrations (521.52, 862.23, and 1734.59 mg/kg), with BAC values (1.06, 1.30, 1.25) greater than 1, which indicates that Atriplex canescens could be a broad-spectrum metal extraction plant. Physiological analysis (antioxidation, extracellular secretions, photosynthesis, and hydraulics) showed that the three desert plants exploited their unique strategy to protect against the stress of complex metals in soils. Moreover, the second growing period was the main heavy metal accumulation and extraction stage concomitant with highest water use efficiency (iWUE). Taken together, the three desert plants exhibited the potent heavy metal extraction ability and physiological and ecological adaptability to a harsh polluted environment in arid desert areas, providing potential resources for the bioremediation of metal-contaminated soils in an arid and semiarid desert environment.


Asunto(s)
Artemisia , Atriplex , Chenopodiaceae , Metales Pesados , Contaminantes del Suelo , Humanos , Atriplex/metabolismo , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Metales Pesados/análisis , Suelo , Plantas/metabolismo
3.
Environ Sci Pollut Res Int ; 28(46): 65447-65461, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34319523

RESUMEN

Longchun 30, a new wheat variety, was used to investigate seedling growth, element absorption, and antioxidant response under 150 mM NaCl and tea polyphenols (TP) (25 and 100 mg L-1) treatments alone or in combination, thus revealing TP-alleviating mechanism on the salt damage to plants. 150 mM NaCl stress alone inhibited the seedling growth, increased sodium content and reactive oxygen species (ROS) accumulation, but reduced potassium (K) and calcium (Ca) levels at different culture times, thus resulting in the oxidative damage to the leaves. Even though 25 or 100 mg L-1 TP treatment alone led to the significant increases of O2·- and H2O2 generation, TP-treated leaves exhibited the reduction of relative electrical conductivity and no change of malondialdehyde content. Moreover, high TP concentration alone stimulated the seedling growth. In addition, the activities and gene expression of superoxide dismutase, catalase, and peroxidase (POD) as well as diamine oxidase and polyamine oxidase were changed to different degrees due to NaCl or TP treatment alone. Further study showed that the presence of 25 or 100 mg L-1 TP promoted the growth, increased K+ and Ca2+ contents, and reduced O2·- and H2O2 accumulation in salt-stressed wheat seedlings. Taken together, salinity-inhibitory effect on the growth of wheat seedlings might be associated with salt-induced imbalance of element content and the increase of oxidative damage resulting from ROS accumulation, while the application of TP effectively alleviated salinity-inhibitory effect on the seedling growth and improved the tolerance of wheat seedlings to salt environment, which might be associated with the increases of K+ and Ca2+ contents as well as the reduction of oxidative damage in the leaves of wheat seedlings under NaCl and TP treatment in combination.


Asunto(s)
Antioxidantes , Plantones , Antioxidantes/metabolismo , Peróxido de Hidrógeno , Estrés Oxidativo , Hojas de la Planta/metabolismo , Polifenoles/farmacología , Estrés Salino , Plantones/metabolismo , , Triticum/genética , Triticum/metabolismo
4.
J Biotechnol ; 231: 81-82, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27245144

RESUMEN

Pseudarthrobacter sulfonivorans strain Ar51, a psychotrophic bacterium isolated from the Tibet permafrost of China, can degrade crude oil and multi benzene compounds efficiently in low temperature. Here we report the complete genome sequence of this bacterium. The complete genome sequence of Pseudarthrobacter sulfonivorans strain Ar51, consisting of a cycle chromosome with a size of 5.04Mbp and a cycle plasmid with a size of 12.39kbp. The availability of this genome sequence allows us to investigate the genetic basis of crude oil degradation and adaptation to growth in a nutrient-poor permafrost environment.


Asunto(s)
Derivados del Benceno/metabolismo , Micrococcaceae/genética , Micrococcaceae/metabolismo , Petróleo/metabolismo , Biotecnología , Hielos Perennes/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA