Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Food ; 25(8): 836-844, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35917528

RESUMEN

One of the most abundant flavonoids present in cacao is (-)-epicatechin (Epi) and this flavanol has been linked to the cardiovascular health promoting actions of cocoa products. We previously demonstrated that Epi reduces infarct size in rodent models of ischemia/reperfusion and permanent coronary occlusion. Reduced infarct size was associated with decreased left ventricular (LV) oxidative stress (OS) and indicators of inflammation factors, which foster myocardial fibrosis. In this study, we examine the antifibrotic actions of Epi in an aging female rat model of pre-heart failure with preserved ejection fraction (pre-HFpEF) as well as its potential to mitigate plasma levels of OS, proinflammatory/profibrotic cytokines, and improve passive and active LV function. Epi treatment [1 mg/(kg·d)] was provided daily by gavage from 21 to 22 months of age, whereas controls received water. A Millar catheter was used to assess hemodynamic function. Subsequently, hearts were arrested in diastole, a balloon inserted into the LV and passive pressure-volume curves generated. Fixed LV sections were processed for collagen area fraction quantification using Sirius Red staining. Treatment with Epi did not lead to detectable changes in LV contractile function. However, passive LV pressure volume curves were significantly right shifted with Epi. Collagen area fraction values indicated that Epi treatment significantly reduces LV fibrosis. Epi also significantly reduced plasma OS markers and levels of profibrotic and proinflammatory cytokines. In conclusion, Epi reduces cardiac fibrosis in an aged, female rat model of pre-HFpEF, which correlates with significant reductions in OS and cytokine levels in the absence of changes in LV contractile function.


Asunto(s)
Catequina , Insuficiencia Cardíaca , Animales , Colágeno , Citocinas , Femenino , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Infarto , Ratas , Volumen Sistólico
2.
Sci Rep ; 11(1): 21861, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750405

RESUMEN

We examined in a rat model of Gulf War illness (GWI), the potential of (-)-epicatechin (Epi) to reverse skeletal muscle (SkM) atrophy and dysfunction, decrease mediators of inflammation and normalize metabolic perturbations. Male Wistar rats (n = 15) were provided orally with pyridostigmine bromide (PB) 1.3 mg/kg/day, permethrin (PM) 0.13 mg/kg/day (skin), DEET 40 mg/kg/day (skin) and were physically restrained for 5 min/day for 3 weeks. A one-week period ensued to fully develop the GWI-like profile followed by 2 weeks of either Epi treatment at 1 mg/kg/day by gavage (n = 8) or water (n = 7) for controls. A normal, control group (n = 15) was given vehicle and not restrained. At 6 weeks, animals were subjected to treadmill and limb strength testing followed by euthanasia. SkM and blood sampling was used for histological, biochemical and plasma pro-inflammatory cytokine and metabolomics assessments. GWI animals developed an intoxication profile characterized SkM atrophy and loss of function accompanied by increases in modulators of muscle atrophy, degradation markers and plasma pro-inflammatory cytokine levels. Treatment of GWI animals with Epi yielded either a significant partial or full normalization of the above stated indicators relative to normal controls. Plasma metabolomics revealed that metabolites linked to inflammation and SkM waste pathways were dysregulated in the GWI group whereas Epi, attenuated such changes. In conclusion, in a rat model of GWI, Epi partially reverses detrimental changes in SkM structure including modulators of atrophy, inflammation and select plasma metabolites yielding improved function.


Asunto(s)
Catequina/uso terapéutico , Síndrome del Golfo Pérsico/tratamiento farmacológico , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Fatiga/tratamiento farmacológico , Fatiga/fisiopatología , Humanos , Masculino , Metaboloma/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Síndrome del Golfo Pérsico/patología , Síndrome del Golfo Pérsico/fisiopatología , Ratas , Ratas Wistar
3.
J Med Food ; 24(11): 1177-1185, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34227843

RESUMEN

Cardiac fibrosis is one of the hallmarks of a diabetic cardiomyopathy. When activated, cardiac fibroblasts (CFs) increase the production of extracellular matrix proteins. Transforming growth factor (TGF)-ß1 is known to mediate cardiac fibrosis through the SMAD pathway. High glucose (HG = 25 mM) cell culture media can activate CFs using TGF-ß1. There is a need to identify effective antifibrotic agents. Studies in animals indicate that treatment with (-)-epicatechin (Epi) appears capable of reducing myocardial fibrosis. Epi binds to G-protein coupled estrogen receptor (GPER) and activates downstream pathways. We evaluated the potential of Epi to mitigate the development of a profibrotic phenotype in HG stimulated CFs. CF primary cultures were isolated from young male rats and were exposed for up to 48 h HG media and treated with vehicle or 1 µM Epi. Relevant profibrotic end points were measured by the use of various biochemical assays. HG exposure of CFs increased TGF-ß1 protein levels by ∼15%, fibronectin ∼25%, urea levels ∼60%, proline incorporation ∼70%, and total collagen ∼15%. Epi treatment was able to significantly block HG induced increases in TGF-ß1, fibronectin, urea, proline, and total collagen protein levels. GPER levels were reduced by HG and restored in CFs treated with Epi an effect associated with the activation (i.e., phosphorylation) of c-Src. Epi treatment also reverted SMAD levels. Altogether, results demonstrate that CFs cultured in HG acquire a profibrotic phenotype, which is blocked by Epi an effect, likely mediated at least, in part, by GPER effects on the SMAD/TGF-ß1 pathway.


Asunto(s)
Catequina , Animales , Catequina/farmacología , Células Cultivadas , Fibroblastos , Fibrosis , Glucosa , Corazón , Masculino , Miocardio/patología , Ratas , Factor de Crecimiento Transformador beta1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA