Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain Behav Immun ; 87: 272-285, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31863824

RESUMEN

Interleukin-17 (IL-17) is expressed in the intestine in response to changes in the gut microbiome landscape and plays an important role in intestinal and systemic inflammatory diseases. There is evidence that dietary factors can also modify the expression of intestinal IL-17. Here, we hypothesized that, similar to several other gut-produced factors, IL-17 may act in the hypothalamus to modulate food intake. We confirm that food intake increases IL-17 expression in the mouse ileum and human blood. There is no expression of IL-17 in the hypothalamus; however, IL-17 receptor A is expressed in both pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons. Upon systemic injection, IL-17 promoted a rapid increase in hypothalamic POMC expression, which was followed by a late increase in the expression of AgRP. Both systemic and intracerebroventricular injections of IL-17 reduced calorie intake without affecting whole-body energy expenditure. Systemic but not intracerebroventricular injection of IL-17 increase brown adipose tissue temperature. Thus, IL-17 is a gut-produced factor that is controlled by diet and modulates food intake by acting in the hypothalamus. Our findings provide the first evidence of a cytokine that is acutely regulated by food intake and plays a role in the regulation of eating.


Asunto(s)
Hipotálamo , Interleucina-17 , Proteína Relacionada con Agouti/metabolismo , Animales , Ingestión de Alimentos , Humanos , Hipotálamo/metabolismo , Ratones , Proopiomelanocortina/metabolismo
2.
J Cell Biochem ; 120(10): 18186-18192, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144370

RESUMEN

Obesity and aging lead to abnormal transforming growth factor-ß1 (TGF-ß1) signaling in the hypothalamus, triggering the imbalance on glucose metabolism and energy homeostasis. Here, we determine the effect of acute exercise on TGF-ß1 expression in the hypothalamus of two models of obesity in mice. The bioinformatics analysis was performed to evaluate the correlation between hypothalamic Tgf-ß1 messenger RNA (mRNA) and genes related to thermogenesis in the brown adipose tissue (BAT) by using a large panel of isogenic BXD mice. Thereafter, leptin-deficient (ob/ob) mice and obese C57BL/6 mice fed on a high-fat diet (HFD) were submitted to the acute exercise protocol. Transcriptomic analysis by using BXD mouse reference population database revealed that hypothalamic Tgf-ß1 mRNA is negatively correlated with genes related to thermogenesis in brown adipose tissue of BXD mice, such as peroxisome proliferator-activated receptor gamma coactivator and is positively correlated with respiratory exchange ratio. In agreement with these results, leptin-deficient (ob/ob) and HFD-fed mice displayed high levels of Tgf-ß1 mRNA in the hypothalamus and reduction of Pgc1α mRNA in BAT. Interestingly, an acute exercise session reduced TGF-ß1 expression in the hypothalamus, increased Pgc1α mRNA in the BAT and reduced food consumption in obese mice. Our results demonstrated that acute physical exercise suppressed hypothalamic TGF-ß1 expression, increasing Pgc1α mRNA in BAT in obese mice.


Asunto(s)
Regulación hacia Abajo , Hipotálamo/metabolismo , Obesidad/genética , Condicionamiento Físico Animal/fisiología , Factor de Crecimiento Transformador beta1/genética , Tejido Adiposo Pardo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Perfilación de la Expresión Génica/métodos , Leptina/deficiencia , Leptina/genética , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/etiología , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Termogénesis/genética , Factor de Crecimiento Transformador beta1/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1126-1137, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30738810

RESUMEN

In experimental obesity, the hypothalamus is affected by an inflammatory response activated by dietary saturated fats. This inflammation is triggered as early as one day after exposure to a high-fat diet, and during its progression, there is recruitment of inflammatory cells from the systemic circulation. The objective of the present study was identifying chemokines potentially involved in the development of hypothalamic diet-induced inflammation. In order to identify chemokines potentially involved in this process, we performed a real-time PCR array that determined Ackr2 as one of the transcripts undergoing differential regulation in obese-prone as compared to obese-resistant mice fed a high-fat diet for three days. ACKR2 is a decoy receptor that acts as an inhibitor of the signals generated by several CC inflammatory chemokines. Our results show that Ackr2 expression is rapidly induced after exposure to dietary fats both in obese-prone and obese-resistant mice. In immunofluorescence studies, ACKR2 was detected in hypothalamic neurons expressing POMC and NPY and also in microglia and astrocytes. The lentiviral overexpression of ACKR2 in the hypothalamus reduced diet-induced hypothalamic inflammation; however, there was no change in spontaneous caloric intake and body mass. Nevertheless, the overexpression of ACKR2 resulted in improvement of glucose tolerance, which was accompanied by reduced insulin secretion and increased whole body insulin sensitivity. Thus, ACKR2 is a decoy chemokine receptor expressed in most hypothalamic cells that is modulated by dietary intervention and acts to reduce diet-induced inflammation, leading to improved glucose tolerance due to improved insulin action.


Asunto(s)
Perfilación de la Expresión Génica , Glucosa/metabolismo , Hipotálamo/metabolismo , Inflamación/genética , Obesidad/genética , Receptores de Quimiocina/genética , Animales , Astrocitos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Prueba de Tolerancia a la Glucosa , Hipotálamo/citología , Inflamación/etiología , Inflamación/metabolismo , Resistencia a la Insulina/genética , Masculino , Ratones , Neuronas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Receptores de Quimiocina/metabolismo
4.
Brain Behav Immun ; 78: 78-90, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30660601

RESUMEN

Obesity-associated hypothalamic inflammation plays an important role in the development of defective neuronal control of whole body energy balance. Because dietary fats are the main triggers of hypothalamic inflammation, we hypothesized that CD1, a lipid-presenting protein, may be involved in the hypothalamic inflammatory response in obesity. Here, we show that early after the introduction of a high-fat diet, CD1 expressing cells gradually appear in the mediobasal hypothalamus. The inhibition of hypothalamic CD1 reduces diet-induced hypothalamic inflammation and rescues the obese and glucose-intolerance phenotype of mice fed a high-fat diet. Conversely, the chemical activation of hypothalamic CD1 further increases diet-induced obesity and hypothalamic inflammation. A bioinformatics analysis revealed that hypothalamic CD1 correlates with transcripts encoding for proteins known to be involved in diet-induced hypothalamic abnormalities in obesity. Thus, CD1 is involved in at least part of the hypothalamic inflammatory response in diet-induced obesity and its modulation affects the body mass phenotype of mice.


Asunto(s)
Antígenos CD1/metabolismo , Hipotálamo/inmunología , Obesidad/metabolismo , Animales , Antígenos CD1/inmunología , Biología Computacional/métodos , Dieta Alta en Grasa , Grasas de la Dieta , Metabolismo Energético , Inflamación/metabolismo , Linfocitos/metabolismo , Masculino , Ratones , Obesidad/inmunología
5.
EBioMedicine ; 39: 448-460, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30522931

RESUMEN

BACKGROUND: The Iroquois homeobox 3 (Irx3) gene has been identified as a functional long-range target of obesity-associated variants within the fat mass and obesity-associated protein (FTO) gene. It is highly expressed in the hypothalamus, and both whole-body knockout and hypothalamic restricted abrogation of its expression results in a lean phenotype, which is mostly explained by the resulting increased energy expenditure in the brown adipose tissue. Because of its potential implication in the pathogenesis of obesity, we evaluated the hypothalamic cell distribution of Irx3 and the outcomes of inhibiting its expression in a rodent model of diet-induced obesity. METHODS: Bioinformatics tools were used to evaluate the correlations between hypothalamic Irx3 and neurotransmitters, markers of thermogenesis and obesity related phenotypes. Droplet-sequencing analysis in >20,000 hypothalamic cells was used to explore the types of hypothalamic cells expressing Irx3. Lentivirus was used to inhibit hypothalamic Irx3 and the resulting phenotype was studied. FINDINGS: IRX3 is expressed predominantly in POMC neurons. Its expression is inhibited during prolonged fasting, as well as when mice are fed a high-fat diet. The partial inhibition of hypothalamic Irx3 using a lentivirus resulted in increased diet-induced body mass gain and adiposity due to increased caloric intake and reduced energy expenditure. INTERPRETATION: Contrary to the results obtained when lean mice are submitted to complete inhibition of Irx3, partial inhibition of hypothalamic Irx3 in obese mice causes an exacerbation of the obese phenotype. These data suggest that at least some of the Irx3 functions in the hypothalamus are regulated according to a hormetic pattern, and modulation of its expression can be a novel approach to modifying the body's energy-handling regulation. FUND: Sao Paulo Research Foundation grants 2013/07607-8 (LAV) and 2017/02983-2 (JDJ); NIH grants R01DK083567 (YBK).


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hipotálamo/metabolismo , Obesidad/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Peso Corporal , Línea Celular , Biología Computacional/métodos , Modelos Animales de Enfermedad , Ingestión de Energía , Metabolismo Energético , Ayuno/metabolismo , Humanos , Masculino , Ratones , Obesidad/inducido químicamente , Obesidad/metabolismo , Fenotipo , Análisis de Secuencia de ARN
6.
J Cell Physiol ; 233(12): 9426-9436, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30063084

RESUMEN

Hypothalamic sphingosine-1-phosphate receptor 1 (S1PR1), the G protein-coupled receptor 1 of sphingosine-1-phosphate, has been described as a modulator in the control of energy homeostasis in rodents. However, this mechanism is still unclear. Here, we evaluate the role of interleukin 6 (IL-6) associated with acute physical exercise in the control of the hypothalamic S1PR1-signal transducer and activator of transcription 3 (STAT3) axis. Acute exercise session and an intracerebroventricular IL-6 injection increased S1PR1 protein content and STAT3 phosphorylation in the hypothalamus of lean and obese mice accompanied by a reduction in food consumption. Transcriptome analysis indicated a strong positive correlation between Il-6 and S1pr1 messenger RNA in several tissues of genetically diverse BXD mice strains and humans, including in the hypothalamus. Interestingly, exercise failed to stimulate the S1PR1-STAT3 axis in IL-6 knockout mice and the disruption of hypothalamic-specific IL-6 action blocked the anorexigenic effects of exercise. Taken together, our results indicate that physical exercise modulates the S1PR1 protein content in the hypothalamus, through the central action of IL-6.


Asunto(s)
Hipotálamo/metabolismo , Interleucina-6/metabolismo , Condicionamiento Físico Animal , Receptores de Lisoesfingolípidos/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Humanos , Inyecciones Intraventriculares , Interleucina-6/administración & dosificación , Interleucina-6/genética , Masculino , Ratones Endogámicos C57BL , Ratones Obesos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Esfingosina-1-Fosfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA