Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theriogenology ; 215: 50-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38006855

RESUMEN

The aim of this work was to assess the antioxidant status and the developmental competence of oocytes recovered by ovum pick-up (OPU) in Italian Mediterranean buffaloes supplemented with green tea extracts (GTE) for 90 days. Buffalo cows (n = 16) were randomly assigned to a control group receiving no supplement and a treatment group, receiving GTE starting 90 days before OPU, carried out for five consecutive sessions. Blood samples were collected before the start of supplementation with GTE (T0) and at day 45 (T1) and day 90 (T2) of supplementation, to measure ferric reducing activity (FRAP), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT). The antioxidant status of follicles was measured as TAC on the follicular fluid collected from the dominant follicle just prior OPU, coinciding with T2, and at the end of five repeated OPU sessions (T3). Another objective was to assess in vitro the protective effects of green tea extracts on hepatic cells exposed to methanol insult. Different concentrations of GTE (0.5 µM and 1 µM) were tested on cultured hepatic cells and viability, morphology and SOD activity were assessed at 24, 48 and 72 h. Supplementation with GTE increased (P < 0.05) the number of total follicles (8.7 ± 0.5 vs 6.9 ± 0.5), the number and the percentage of Grade A + B cumulus-oocyte complexes (COCs) compared with the control (3.7 ± 0.4 vs 2.3 ± 0.3 and 57.5 ± 4.2 vs 40.4 ± 4.9 %, respectively). Oocyte developmental competence was improved in the GTE group as indicated by the higher (P < 0.05) percentages of Grade 1,2 blastocysts (44.8 vs 29.1 %). In the GTE group, plasma TAC was higher both at T1 and T2, while FRAP increased only at T2, with no differences in SOD and CAT. The TAC of follicular fluid was higher (P < 0.05) in the GTE compared to the control both at T2 and at T3 The in vitro experiment showed that co-treatment with methanol and 1 µM GTE increased (p < 0.01) cell viability at 24 h (P < 0.01), 48 h (P < 0.05) and 72 h (P < 0.01) compared with the methanol treatment co-treatment with 1 µM GTE prevented the decrease in SOD activity observed with methanol at 24 and 48 h of culture. In conclusion, the results of in vivo and in vitro experiments suggest that supplementation with GTE increases buffalo oocyte developmental competence, by improving oxidative status and liver function.


Asunto(s)
Antioxidantes , Bison , Femenino , Bovinos , Animales , Antioxidantes/farmacología , Búfalos , Metanol , Oocitos , Suplementos Dietéticos , Hierro , , Superóxido Dismutasa , Italia
2.
Theriogenology ; 123: 30-36, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273738

RESUMEN

The earliest stages of embryo development are deeply influenced by reactive oxygen species (ROS), byproducts of the mitochondrial oxygen metabolism that play a key role as messengers in normal cell signal transduction and cell cycling. Despite its positive roles, the imbalance caused by the excess of ROS and an inefficient antioxidant system leads to oxidative stress, with negative consequences to the cell such as DNA damage, metabolic changes, mitochondrial stress and cell death. In the present work, crocetin - a natural antioxidant - was added to the culture media of bovine embryos to evaluate the efficiency of its antioxidant capability during embryo culture. Oocytes were in vitro matured (IVM) and fertilized according to standard protocols. Embryos were cultured at 38.5 °C under humidified air with 5% CO2, 7% O2, and 90% N2 in Synthetic Oviduct Fluid (SOF) medium supplemented with amino acids and either 5% of FBS (SOFaa) (control group) or SOFaa supplemented with 1  µM crocetin (crocetin group). After 5 days from the beginning of in vitro culture (IVC) (day 5 - D5), embryos were transferred to individual drops of culture media. At day 7 (D7), embryos were assessed by means of blastocyst rates, morphophysiological analyzes (total cell number, ROS and mitochondrial activity levels), transcript quantitation of 47 genes and metabolomic evaluation of the culture media by Raman spectroscopy. In the crocetin group blastocyst rates were higher and embryos had increased total cell number and decreased intracellular levels of ROS. These embryos also had upregulation of genes related with response to stress and lipid metabolism (ATF4, BAX, FOXO3, GADD45A, GPX1, GPX4, HSF1, SOD2, ACACA, SREBF1 and SREBF2). Raman spectroscopy corroborated these results indicating more active lipid and amino acid production in this group. The absence of crocetin in the culture media resulted in higher ROS level, as well as up regulation of genes related to DNA damage, stress response and energy metabolism (MORF4L2, SOD1, TXN, PFKP, PGK1 and PPARGC1A). In conclusion, crocetin supplementation during culture protects embryos from oxidative stress and influences the adaptive response to stress conditions, leading to an increase in both blastocyst yield and quality, as well as changes in transcriptomic and metabolic profile of in vitro produced bovine embryos.


Asunto(s)
Blastocisto/efectos de los fármacos , Carotenoides/farmacología , Bovinos/embriología , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Transcriptoma , Animales , Antioxidantes/farmacología , Técnicas de Cultivo de Embriones/veterinaria , Vitamina A/análogos & derivados
3.
Theriogenology ; 86(8): 1879-85, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27393222

RESUMEN

The aim of this work was to assess the effect of supplementation of bovine culture medium with the natural antioxidant crocetin on in vitro blastocyst development and quality. This was evaluated as cryotolerance, apoptosis index, and total cells number and allocation. Abattoir-derived oocytes were matured and fertilized in vitro according to standard procedure. Twenty hours after IVF, presumptive zygotes were cultured in synthetic oviduct fluid medium, supplemented with 0, 1, 2.5, and 5 µM crocetin (experiment 1) at 39 °C under humidified air with 5% CO2, 7% O2, and 88% N2. On Day 7, embryo yields were assessed and the blastocysts were vitrified by Cryotop method in 16.5% ethylene glycol, 16.5% DMSO, and 0.5 M sucrose. Finally, blastocysts produced on Day 8 in the absence (control) and presence of 1 µM crocetin were used for terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling and differential staining to evaluate, respectively, the apoptotic rate and the allocation of cells into inner cell mass (ICM) and trophectoderm (TE) lineages (experiment 2). Embryo development was higher in the 1 µM crocetin group compared to the control, both in terms of total embryo output (37.7 ± 4.2%, 52.9 ± 6.3%, 40.9 ± 7.6%, and 42.4 ± 8.7%, respectively, with 0, 1, 2.5, and 5 µM; P < 0.01) and grade 1 and 2 blastocysts (33.6 ± 4.9%, 46.1 ± 7.3%, 37.8 ± 7.9%, and 39.4 ± 7.9%, respectively, with 0, 1, 2.5, and 5 µM; P < 0.05). Moreover, the percentage of fast-developing embryos increased in 1 µM crocetin group compared to the control (23.4 ± 4.7%, 32.7 ± 6.6%, 27.2 ± 6.6%, and 30.1 ± 7.2%, respectively, with 0, 1, 2.5, and 5 µM; P < 0.05). In addition, the enrichment of culture medium with 1 µM crocetin improved embryo cryotolerance compared to the control, as indicated by higher hatching rates recorded after 48 hours postwarming culture (46.5% vs. 60.4%; P < 0.05). Furthermore, 1 µM crocetin decreased both the average number (9.9 ± 0.4 vs. 7.1 ± 0.3) and the percentage of apoptotic cells (7.1 ± 0.4 vs. 4.2 ± 0.2) in blastocysts compared to the control (P < 0.01). However, no differences were recorded in the average number of ICM, TE, and total cells between 1 µM crocetin and control groups. In conclusion, the enrichment of bovine culture medium with 1 µM crocetin increased both blastocyst yield and quality, as indicated by the improved chronology of embryo development, increased resistance to cryopreservation, and reduced incidence of apoptosis.


Asunto(s)
Apoptosis , Blastocisto/efectos de los fármacos , Carotenoides/farmacología , Bovinos/embriología , Criopreservación/veterinaria , Técnicas de Cultivo de Embriones/veterinaria , Animales , Blastocisto/fisiología , Desarrollo Embrionario/efectos de los fármacos , Vitamina A/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA