Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Immunol ; 13: 946713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016938

RESUMEN

The fortification of flour with folic acid for the prevention of neural tube defects (NTD) is currently mandated in over eighty countries worldwide, hence compelling its consumption by the greater part of the world's population. Notwithstanding its beneficial impact on rates of NTD, pervasive folic acid supplementation has invariably led to additive daily intakes reaching well beyond their original target, resulting in the circulation of unmetabolized folic acid. Associated idiopathic side-effects ranging from allergies to cancer have been suggested, albeit inconclusively. Herein, we hypothesize that their inconsistent detection and elusive etiology are linked to the in vivo generation of the immunosuppressive folic acid metabolite 6-formylpterin, which interferes with the still emerging and varied functions of Major Histocompatibility Complex-related molecule 1 (MR1)-restricted T cells. Accordingly, we predict that fortification-related adverse health outcomes can be eliminated by substituting folic acid with the bioequivalent folate vitamer 5-methyltetrahydrofolate, which does not break down into 6-formylpterin.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Defectos del Tubo Neural , Harina , Ácido Fólico/efectos adversos , Alimentos Fortificados/efectos adversos , Antígenos de Histocompatibilidad Clase I , Humanos , Antígenos de Histocompatibilidad Menor , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/epidemiología , Defectos del Tubo Neural/prevención & control
2.
Allergy ; 76(10): 3155-3170, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34185885

RESUMEN

BACKGROUND: Mucosal-associated invariant T (MAIT) cells are unconventional T cells which recognize microbial metabolites presented by the major histocompatibility complex class I-related molecule MR1. Although MAIT cells have been shown to reside in human and murine skin, their contribution to atopic dermatitis (AD), an inflammatory skin disease associated with barrier dysfunction and microbial translocation, has not yet been determined. METHODS: Genetic deletion of MR1 and topical treatment with inhibitory MR1 ligands, which result in the absence and functional inhibition of MAIT cells, respectively, were used to investigate the role of MR1-dependent immune surveillance in a MC903-driven murine model of AD. RESULTS: The absence or inhibition of MR1 arrested AD disease progression through the blockade of both eosinophil activation and recruitment of IL-4- and IL-13-producing cells. In addition, the therapeutic efficacy of phototherapy against MC903-driven AD could be increased with prior application of folate, which photodegrades into the inhibitory MR1 ligand 6-formylpterin. CONCLUSION: We identified MAIT cells as sentinels and mediators of cutaneous type 2 immunity. Their pathogenic activity can be inhibited by topical application or endogenous generation, via phototherapy, of inhibitory MR1 ligands.


Asunto(s)
Dermatitis Atópica , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Menor , Células T Invariantes Asociadas a Mucosa , Terapia Ultravioleta , Animales , Dermatitis Atópica/terapia , Modelos Animales de Enfermedad , Ratones
3.
Food Funct ; 11(7): 5782-5787, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32618294

RESUMEN

Methylglyoxal (MGO) is the main antimicrobial determinant associated with using Manuka Honey as a topical dressing. While direct mechanisms of Manuka honey MGO's antimicrobial activity have been demonstrated, such as disruption of bacterial fimbria and flagella, no interaction of Manuka honey-derived MGO with antimicrobial effector cells of the immune system, such as mucosal-associated invariant T cells (MAIT cells), has yet been reported. MAIT cells are an abundant subset of human T cells, critical for regulating a diverse range of immune functions, including antimicrobial defense mechanisms but also mucosal barrier integrity. MAIT cells become activated by recognition of an important microbial metabolite, 5-amino-6-d-ribitylaminouracil (5-A-RU), which is produced by a wide range of microbial pathogens and commensals. Recognition is afforded when 5-A-RU condenses with mammalian-cell derived MGO to form the potent MAIT cell activator, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU). Formation of 5-OP-RU and its subsequent presentation to MAIT cells by major histocompatibility (MHC)-related molecule 1 (MR1) facilitates host-pathogen and host-commensal interactions. While MGO is a metabolite naturally present in mammalian cells, it is unclear whether exogenous dietary MGO sources, such as those obtained from Manuka honey intake, can contribute to 5-OP-RU formation and enhance MAIT cell activation. In this work, we report that endogenous MGO is the rate-limiting substrate for converting microbial 5-A-RU to 5-OP-RU and that Manuka honey-derived MGO significantly enhances MAIT cell activation in vitro. Our findings posit a novel mechanism by which intake of a food item, such as Manuka honey, can potentially support immune homeostasis by enhancing MAIT cell-specific microbial sensing.


Asunto(s)
Miel , Factores Inmunológicos/farmacología , Leptospermum , Activación de Linfocitos/efectos de los fármacos , Células T Invariantes Asociadas a Mucosa/metabolismo , Piruvaldehído/farmacología , Antibacterianos/farmacología , Apiterapia , Humanos , Piruvaldehído/metabolismo , Ribitol/análogos & derivados , Ribitol/metabolismo , Uracilo/análogos & derivados , Uracilo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA