Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 137: 106636, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290376

RESUMEN

Herein we report the synthesis of new furanoid sugar amino acids and thioureas, prepared by coupling aromatic amino acids and dipeptides with isothiocyanato- functionalized ribofuranose ring. Since carbohydrate-derived structures possess many biological activities, synthesized compounds were evaluated as anti-amyloid and antioxidant agents. The anti-amyloid activity of the studied compounds was evaluated based on their potential to destroy amyloid fibrils of intrinsically disordered Aß40 peptide and globular hen egg-white (HEW) lysozyme. The destructive efficiency of the compounds differed between the studied peptides. While the destruction activity of the compounds on the HEW lysozyme amyloid fibrils was negligible, the effect on Aß40 amyloid fibrils was significantly higher. Furanoid sugar α-amino acid 1 and its dipeptide derivatives 8 (Trp-Trp) and 11 (Trp-Tyr) were the most potent anti-Aß fibrils compounds. The antioxidant properties of synthesized compounds were estimated by three complementary in vitro assays (DPPH, ABTS, and FRAP). The ABTS assay was the most sensitive for assessing the radical scavenging activity of all tested compounds compared to the DPPH test. Significant antioxidant activity was detected for compounds in the group of aromatic amino acids depending on the present amino acid, with the highest activity in the case of dipeptides 11 and 12 containing the Tyr and Trp moiety. Regarding the FRAP assay, the best reducing antioxidant potential revealed Trp-containing compounds 5, 10, and 12.


Asunto(s)
Péptidos beta-Amiloides , Antioxidantes , Aminoácidos/farmacología , Aminoácidos/química , Aminoácidos Aromáticos , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Carbohidratos , Dipéptidos/farmacología , Dipéptidos/química , Muramidasa/química , Azúcares
2.
Int J Biol Macromol ; 242(Pt 2): 124856, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178892

RESUMEN

Amyloidoses represent a group of pathological conditions characterized by amyloid fibrils accumulating in the form of deposits in intra- or extracellular space, leading to tissue damage. The lysozyme from hen egg-white (HEWL) is often used as a universal model protein to study the anti-amyloid effects of small molecules. The in vitro anti-amyloid activity and mutual interactions of green tea leaf constituents: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), gallic acid (GA), caffeine (CF) and their equimolar mixtures were studied. The inhibition of HEWL amyloid aggregation was monitored by a Thioflavin T fluorescence assay and atomic force microscopy (AFM). The interactions of the analyzed molecules with HEWL were interpreted by ATR-FTIR and protein-small ligand docking studies. EGCG was the only substance efficiently inhibiting amyloid formation (IC50 âˆ¼193 µM), slowing the aggregation process, reducing the number of fibrils and partially stabilizing the secondary structure of HEWL. Compared to EGCG alone, EGCG-containing mixtures displayed lower overall anti-amyloid efficacy. The decrease in efficiency results from (a) the spatial interference of GA, CF and EC with EGCG while binding to HEWL, (b) the propensity of CF to form a less active adduct with EGCG, which participates in interactions with HEWL in parallel with pure EGCG. This study confirms the importance of interaction studies, revealing the possible antagonistic behavior of molecules when combined.


Asunto(s)
Amiloide , Muramidasa , Amiloide/química , Muramidasa/química , Proteínas Amiloidogénicas , Cafeína/farmacología , , Hojas de la Planta/metabolismo , Agregado de Proteínas
3.
Int J Biol Macromol ; 179: 475-484, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33675837

RESUMEN

Many Chinese herbs are well known for their neuroprotective and anti-oxidant properties. Extracts of Salvia miltiorrhiza and Anemarrhenae asphodeloides, tanshinone IIA (tanIIA), salvianolic acid B (Sal B) and sarsasapogenin (ML-1), were selected to study their dissociation potential towards Aß42 peptide fibrils and neuroprotective effect on cells. Moreover, derivatives of sarsasapogenin (ML-2, ML-3 and ML-4) have been prepared by the addition of modified carbamate moiety. TanIIA and Sal B have shown to possess a strong ability to dissociate Aß42 fibrils. The dissociation potential of ML-1 increased upon the introduction of carbamate moiety with N-heterocycles. In silico data revealed that derivatives ML-4 and Sal B interact with Aß42 regions responsible for fibril stabilization through hydrogen bonds. Contrary, tanIIA binds close to a central hydrophobic region, which may lead to destabilization of fibrils. Sarsasapogenin derivative ML-2 decreased nitride oxide production, and derivative ML-4 enhanced the growth of neurites. The reported data highlight the possibility of using active compounds to design novel treatment agents for Alzheimer's disease.


Asunto(s)
Abietanos/farmacología , Péptidos beta-Amiloides/metabolismo , Benzofuranos/farmacología , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/metabolismo , Espirostanos/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Anemarrhena/química , Línea Celular , China , Humanos , Extractos Vegetales , Salvia miltiorrhiza/química
4.
Int J Biol Macromol ; 178: 424-433, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662415

RESUMEN

Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 µM and 186.20 µM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.


Asunto(s)
Amiloide/química , Muramidasa/química , Agregado de Proteínas , Extracto de Senna/química , Senósidos/química , Humanos
5.
Sci Rep ; 10(1): 9115, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499589

RESUMEN

Exogenous insulin, used as a therapeutic agent for diabetes, forms insoluble deposits containing amyloid fibrillar structures near the administration site. We have analyzed the in vitro anti-amyloid activity of four green tea constituents: (-)-epigallocatechin gallate (EGCG), (-)-epicatechin (EC), gallic acid (GA), caffeine (CF), and their equimolar mixtures. Regarding individually tested compounds, only EGCG inhibited the fibrillization process. The individual EC, GA, and CF molecules were ineffective. The presence of EGCG in equimolar combinations with GA, EC, or CF was required for the inhibitory activity of most mixtures. Molecular docking revealed that EGCG interacts with an essential amyloidogenic region of insulin chain B. Individually inactive GA had a potentiating effect on the activity of EGCG. In contrast, EC and CF had a negative impact on the activity of the mixtures. We have observed diverse morphology and the amount of insulin amyloid aggregates formed in the presence of studied compounds. The distinct types of amyloid aggregates created in vitro in the presence of EGCG and other green tea constituents were characterized. Results indicate that the biological activity of individual molecules is not directly applicable to the pooled samples effects prediction.


Asunto(s)
Amiloide/química , Insulina/química , Agregado de Proteínas/fisiología , Té/química , Amiloide/metabolismo , Sitios de Unión , Cafeína/química , Cafeína/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/metabolismo , Ácido Gálico/química , Ácido Gálico/metabolismo , Humanos , Insulina/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína , Té/metabolismo
6.
Bioorg Med Chem ; 26(14): 4288-4300, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30031653

RESUMEN

Several neurodegenerative diseases, like Alzheimer's (AD), are characterized by amyloid fibrillar deposition of misfolded proteins, and this feature can be exploited for both diagnosis and therapy design. In this paper, structural modifications of curcumin scaffold were examined in order to improve its bioavailability and stability in physiological conditions, as well as its ability to interfere with ß-amyloid fibrils and aggregates. The acid-base behaviour of curcumin derivatives, their pharmacokinetic stability in physiological conditions, and in vitro ability to interfere with Aß fibrils at different incubation time were investigated. The mechanisms governing these phenomena have been studied at atomic level by means of molecular docking and dynamic simulations. Finally, biological activity of selected curcuminoids has been investigated in vitro to evaluate their safety and efficiency in oxidative stress protection on hippocampal HT-22 mouse cells. Two aromatic rings, π-conjugated structure and H-donor/acceptor substituents on the aromatic rings showed to be the sine qua non structural features to provide interaction and disaggregation activity even at very low incubation time (2h). Computational simulations proved that upon binding the ligands modify the conformational dynamics and/or interact with the amyloidogenic region of the protofibril facilitating disaggregation. Significantly, in vitro results on hippocampal cells pointed out protection against glutamate toxicity and safety when administered at low concentrations (1 µM). On the overall, in view of its higher stability in physiological conditions with respect to curcumin, of his rapid binding to fibrillar aggregates and strong depolymerizing activity, phtalimmide derivative K2F21 appeared a good candidate for both AD diagnostic and therapeutic purposes.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Curcumina/farmacología , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad
7.
Chem Biol Drug Des ; 89(3): 411-419, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27569739

RESUMEN

Curcumin and its derivatives have attracted great interest in the prevention and treatment of Alzheimer's disease, thanks both to the ability to hinder the formation of amyloid-beta (Aß) aggregates and the ability to bind Cu (II) ion. In this article, we explore the ability of curcumin derivatives of K2T series to affect amyloid Aß1-40 aggregation. These derivatives were obtained by introducing the t-butyl ester group through a methylenic spacer on the central carbon atom of the ß-diketo moiety of curcumin frame. The studied curcuminoids were demonstrated to inhibit Aß1-40 fibrillization at substoichiometric concentrations with IC50 value near that of curcumin. In addition, the antioxidant properties and DNA interaction of their Cu(II) complexes is evaluated. The structure of Cu(II)-K2T31 complex is also proposed on the basis of DFT calculation.


Asunto(s)
Antioxidantes/farmacología , Complejos de Coordinación/farmacología , Cobre/química , Curcumina/análogos & derivados , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Antioxidantes/química , Complejos de Coordinación/química , Cobre/farmacología , Curcumina/química , ADN/química , ADN/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Humanos , Concentración 50 Inhibidora , Microscopía de Fuerza Atómica , Estructura Molecular , Fragmentos de Péptidos/metabolismo , Relación Estructura-Actividad
8.
Curr Alzheimer Res ; 2(2): 219-26, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15974921

RESUMEN

The histopathological diagnosis of Alzheimer's disease relies on two kinds of proteinaceous aggregates: the extracellular plaques built from filaments of the Abeta-peptide and the intracellular tangles consisting of tau polymerized into Paired Helical Filaments (PHFs). The order of aggregation events is still under debate, but it is well accepted that tau-related changes have an important impact on the viability of neurons. In neurons, early morphological changes are seen in axons which begin to loose and retract synapses. This process is accompanied by an increase of aggregated tau protein. Thus the prevention of tau aggregation seems to be a valuable target for therapy of Alzheimer's disease. Here we present a screening procedure by which we identified inhibitors of tau polymerization. In the primary screen we used a thioflavin-S based assay which detects PHF formation in solution. These initial hits were further analyzed for their capacity to depolymerize preformed PHFs. These results were confirmed by several secondary assays (tryptophan fluorescence, pelleting, filter trapping and electron microscopy). By this approach it is possible to identify small molecule compounds which prevent or reverse the aggregation of tau and thereby might improve the viability of neurons in a therapeutic approach.


Asunto(s)
Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Evaluación Preclínica de Medicamentos/métodos , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA