Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(13): 15590-15602, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585091

RESUMEN

Anaplastic thyroid cancer (ATC) is one of the most lethal malignant tumors for which there is no effective treatment. There are an increasing number of studies on herbal medicine for treating malignant tumors, and the classic botanical medicine Digitalis and its active ingredients for treating heart failure and arrhythmias have been revealed to have significant antitumor efficacy against a wide range of malignant tumors. However, the main components of Digitalis and the molecular mechanisms of its anti-ATC effects have not been extensively studied. Here, we screened the main components and core targets of Digitalis and verified the relationship between the active components and targets through network pharmacology, molecular docking, and experimental validation. These experiments showed that the active ingredients of Digitalis inhibit ATC cell activity and lead to ATC cell death through the apoptotic pathway.

2.
Mol Cancer ; 22(1): 68, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024932

RESUMEN

The development of head and neck squamous cell carcinoma (HNSCC) is a multi-step process, and its survival depends on a complex tumor ecosystem, which not only promotes tumor growth but also helps to protect tumor cells from immune surveillance. With the advances of existing technologies and emerging models for ecosystem research, the evidence for cell-cell interplay is increasing. Herein, we discuss the recent advances in understanding the interaction between tumor cells, the major components of the HNSCC tumor ecosystem, and summarize the mechanisms of how biological and abiotic factors affect the tumor ecosystem. In addition, we review the emerging ecological treatment strategy for HNSCC based on existing studies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas/patología , Terapia por Relajación , Ecosistema
3.
Phytomedicine ; 108: 154528, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36343549

RESUMEN

BACKGROUND: Anaplastic thyroid cancer (ATC) is one of the fatal cancers and has not effective treatments. Alantolactone (ATL), a terpenoid extracted from traditional Chinese medicinal herb Inula helenium L., confers significant anti-inflammatory, antibacterial and antitumor activity. However, the activity and mechanisms of ATL in ATC remain unclear. PURPOSE: To investigate the potential anti-ATC effects in vitro and in vivo and the mechanisms involved. METHODS: The anti-proliferative activity of Alantolactone (ATL) against ATC cells was analyzed through CCK-8 and colony formation assays. Flow cytometry assay was performed to assess the cell cycle, cell apoptosis, ROS, and mitochondrial membrane potential (ΔΨm), whereas the cellular localization of cytochrome c and calreticulin were determined using cellular immunofluorescence assays. The lactate dehydrogenase (LDH) enzyme activity in the cell culture medium was measured using a commercial LDH kit, whereas ELISA was conducted to assess the secretory function of IL-1ß. Western blot assays were conducted to determine the expression or regulation of proteins associated with apoptosis and pyroptosis. Subcutaneous tumor model of nude mice was established to evaluate the anticancer activity of ATL in vivo. The expression of Ki67, cyclin B1, cleaved-PARP, cleaved-caspase 3, and IL-1ß in the animal tumor tissues was profiled using immunohistochemistry analyses. RESULTS: Our data showed that ATL significantly inhibited the proliferation and colony formation activity of ATC cells. ATL induced ATC cell cycle arrest at G2/M phase, and downregulated the expression of cyclin B1 and CDC2. Furthermore, ATL induced concurrent apoptosis and pyroptosis in the ATC cells, and the cleavage of PARP and GSDME. It also significantly increased the release of LDH and IL-1ß. Mechanically, ATL-mediated increase in ROS suppressed the Bcl-2/Bax ratio, downregulated the mitochondrial membrane potential and increased the release of cytochrome c, leading to caspase 9 and caspase 3 cleavage. We also found that ATL induced the translocation of an immunogenic cell death marker (calreticulin) to the cell membrane. In addition, it inhibited the growth of the ATC subcutaneous xenograft model, and activated proteins associated with apoptosis and pyroptosis, with a high safety profile. CONCLUSION: Taken together, these results firstly demonstrated that ATL exerted an anti-ATC activity by inducing concurrent apoptosis and GSDME-dependent pyroptosis through ROS-mediated mitochondria-dependent caspase activation. Meanwhile, these cell deaths exhibited obvious characteristics of immunogenic cell death, which may synergistically increase the potential of cancer immunotherapy in ATC. Further studies are needed to explore deeper mechanisms for the anti- ATC activity of ATL.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Ratones , Animales , Humanos , Caspasa 3/metabolismo , Piroptosis , Caspasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ciclina B1/metabolismo , Calreticulina/metabolismo , Calreticulina/farmacología , Citocromos c/metabolismo , Ratones Desnudos , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Carcinoma Anaplásico de Tiroides/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Apoptosis , Mitocondrias , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/metabolismo , Línea Celular Tumoral
4.
Front Oncol ; 9: 578, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31334112

RESUMEN

Polygonum perfoliatum L. belongs to the genus Polygonaceae and has a long history to be used as a Chinese medicinal herb to reduce swelling, control body temperature, and promote detoxification. However, its anticancer activity and mechanisms of action have not been evaluated yet. In the present study, we used several cell lines and xenograft models from different cancers to demonstrate the broad-spectrum anticancer activity of P. perfoliatum L as well as its underlying mechanisms of action in vitro and in vivo. The ethyl acetate extract of P. perfoliatum L showed good anticancer activity and was further fractioned to obtain five active components, including PEA to PEE. Among these fractions, PEC showed the strongest cytotoxicities against various cancer cell lines. It was further observed that PEC inhibited cancer cell growth, arrested cells at G2 phase, and induced apoptosis in vitro and suppressed tumor growth and angiogenesis in vivo in a dose- and time-dependent manner. Furthermore, PEC decreased the expression of vascular endothelial growth factor (VEGF) and micro-vascular density (MVD) in tumor tissues in vivo. It also promoted the proliferation of T and B lymphocytes, increased the activities of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), enhanced the secretion of interleukin 2 (IL-2) by spleen cells, and raised the levels of IgG, IgG2a, and IgG2b antibodies in tumor-bearing mice in vivo, which were at least partially responsible for the anticancer activity of PEC. In summary, PEC has shown broad-spectrum anticancer activities without causing any host toxicity in vitro and in vivo and may be developed as a preventive and therapeutic agent against human cancer. Further studies are urgently needed to determine the anticancer compounds in PEC and their detailed molecular mechanisms.

5.
Oncol Rep ; 39(2): 711-720, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29207150

RESUMEN

The multi-target kinase inhibitor sorafenib has been approved for the treatment of patients with advanced differentiated thyroid cancer. However, different sensitivities to sorafenib have been observed, and few patients have benefited from sorafenib treatment in the long term. In the event of acquired resistance to sorafenib it is not beneficial to continue treatment in most patients. Autophagy can be induced in a variety of cancer treatments and plays an important role in cancer treatment. The role of autophagy in sorafenib treatment of thyroid cancer has not been fully demonstrated. The present study investigated whether autophagy is activated by sorafenib during the treatment of thyroid cancer, examined the underlying mechanisms, and explored potential strategies to enhance the therapeutic sensitivity of sorafenib. Chloroquine (CQ) is an autophagy inhibitor that has been reported to increase sensitivity to various cancer treatments. Thyroid cancer xenograft model mice were treated with sorafenib, CQ, or a combination of sorafenib and CQ. We observed that CQ or sorafenib treatment suppressed tumor growth, while mice treated with the combination of sorafenib and CQ displayed significantly reduced tumor growth compared with those treated with sorafenib or CQ alone. Western blotting results indicated that sorafenib concurrently inhibited the activities of the MAPK and AKT/mTOR pathways in thyroid cancer. Autophagy was activated by sorafenib in thyroid cancer, both in vitro and in vivo, which was at least in part due to suppression of the AKT/mTOR pathway. Combination treatment including CQ could inhibit the autophagic flux induced by sorafenib. Silencing the key autophagy gene ATG5 using small interfering RNA also increased the anticancer effect of sorafenib. In summary, the present study revealed that inhibition of autophagy enhances the anticancer effect of sorafenib, and the combination of CQ with sorafenib treatment represents a potential therapeutic strategy for treating advanced differentiated thyroid cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Autofagia/efectos de los fármacos , Cloroquina/administración & dosificación , Niacinamida/análogos & derivados , Compuestos de Fenilurea/administración & dosificación , Neoplasias de la Tiroides/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Cloroquina/farmacología , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Niacinamida/administración & dosificación , Niacinamida/farmacología , Compuestos de Fenilurea/farmacología , Sorafenib , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA