Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 100: 154073, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35397285

RESUMEN

BACKGROUND: The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE: The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS: Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS: This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 µg/ml, 14 compounds with MIC ranges including values < 10 µg/ml, 5 compounds with MIC values less than 5 µM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS: The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Sinergismo Farmacológico , Humanos , Pruebas de Sensibilidad Microbiana , Fitoquímicos/farmacología , Infecciones Estafilocócicas/microbiología
2.
Tuberculosis (Edinb) ; 100: 95-101, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27553416

RESUMEN

The lack of proper treatment for serious infectious diseases due to the emergence of multidrug resistance reinforces the need for the discovery of novel antibiotics. This is particularly true for tuberculosis (TB) for which 3.7% of new cases and 20% of previously treated cases are estimated to be caused by multi-drug resistant strains. In addition, in the case of TB, which claimed 1.5 million lives in 2014, the treatment of the least complicated, drug sensitive cases is lengthy and disagreeable. Therefore, new drugs with novel targets are urgently needed to control resistant Mycobacterium tuberculosis strains. In this manuscript we report the characterization of the thiopeptide micrococcin P1 as an anti-tubercular agent. Our biochemical experiments show that this antibiotic inhibits the elongation step of protein synthesis in mycobacteria. We have further identified micrococcin resistant mutations in the ribosomal protein L11 (RplK); the mutations were located in the proline loop at the N-terminus. Reintroduction of the mutations into a clean genetic background, confirmed that they conferred resistance, while introduction of the wild type RplK allele into resistant strains re-established sensitivity. We also identified a mutation in the 23S rRNA gene. These data, in good agreement with previous structural studies suggest that also in M. tuberculosis micrococcin P1 functions by binding to the cleft between the 23S rRNA and the L11 protein loop, thus interfering with the binding of elongation factors Tu and G (EF-Tu and EF-G) and inhibiting protein translocation.


Asunto(s)
Antibióticos Antituberculosos/farmacología , Bacteriocinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Péptidos/farmacología , Animales , Antibióticos Antituberculosos/administración & dosificación , Proteínas Bacterianas/biosíntesis , Bacteriocinas/administración & dosificación , Células Cultivadas , Recuento de Colonia Microbiana , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Bacteriana/genética , Humanos , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana/métodos , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/aislamiento & purificación , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Péptidos/administración & dosificación , Proteínas Ribosómicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA