Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1460-1466, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-33787144

RESUMEN

This project aimed to explore the protective effect of ginsenoside Rg_1 on hypoxia/reoxygenation(H/R)-induced H9 c2 cardiomyocyte injury and its underlying signaling pathway. The H/R model of H9 c2 cardiomyocytes was established and then the cells were divided into different treatment groups. CCK-8(cell counting kit-8) was used to detect the activity of cardiomyocytes; Brdu assay was used to detect the proliferation of H9 c2 cells; the caspase-3 activity was tested, and then the protein expression was assessed by Western blot. Flow cytometry was used to evaluate the apoptosis level of cardiomyocytes. Ginsenoside Rg_1 inhibited H/R-induced cardiomyocyte apoptosis and caspase-3 activity, promoted nuclear transcription of nuclear factor erythroid-2 related factor 2(Nrf2), and enhanced the expression of the downstream heme oxygenase-1(HO-1). Ginsenoside Rg_1 could increase Nrf2 nuclear transcription and HO-1 expression with the increase of concentration(10, 20, 40, 60 µmol·L~(-1)). However, the protective effect of ginsenoside Rg_1 on cardiomyocytes was significantly weakened after the transfection of Nrf2-siRNA. Ginsenoside Rg_1 could protect cardiomyocytes by activating the Nrf2/HO-1 pathway.


Asunto(s)
Ginsenósidos , Apoptosis , Ginsenósidos/farmacología , Hemo-Oxigenasa 1/genética , Humanos , Hipoxia , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA