Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Toxicol Lett ; 214(2): 218-25, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22960666

RESUMEN

The aim of this study was to compare the biological response of a sophisticated in vitro 3D co-culture model of the epithelial airway barrier to a co-exposure of CeO(2) NPs and diesel exhaust using a realistic air-liquid exposure system. Independent of the individual effects of either diesel exhaust or CeO(2) NPs investigation observed that a combined exposure of CeO(2) NPs and diesel exhaust did not cause a significant cytotoxic effect or alter cellular morphology after exposure to diesel exhaust for 2h at 20µg/ml (low dose) or for 6h at 60µg/ml (high dose), and a subsequent 6h exposure to an aerosolized solution of CeO(2) NPs at the same doses. A significant loss in the reduced intracellular glutathione level was recorded, although a significant increase in the oxidative marker HMOX-1 was found after exposure to a low and high dose respectively. Both the gene expression and protein release of tumour necrosis factor-α were significantly elevated after a high dose exposure only. In conclusion, CeO(2) NPs, in combination with diesel exhaust, can significantly interfere with the cell machinery, indicating a specific, potentially adverse role of CeO(2) NPs in regards to the biological response of diesel exhaust exposure.


Asunto(s)
Cerio/farmacología , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Glutatión/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Humanos , Microscopía Fluorescente , Estrés Oxidativo/fisiología , ARN/química , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema Respiratorio/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Part Fibre Toxicol ; 9: 33, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901679

RESUMEN

BACKGROUND: Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems.This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose-equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO-1) as well as the release of the (pro)-inflammatory cytokine TNFα. RESULTS: Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor "flame-gases", particle specific effects become apparent. Other parameters such as LDH and HO-1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO-1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO-1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. CONCLUSION: In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose-response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas-derived effects.


Asunto(s)
Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Mucosa Respiratoria/efectos de los fármacos , Óxido de Zinc/toxicidad , Aerosoles/química , Diferenciación Celular , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glutatión/metabolismo , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Nanopartículas del Metal/química , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Oxidantes/química , Oxidación-Reducción , Material Particulado/química , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/metabolismo , Suspensiones/química , Factor de Necrosis Tumoral alfa/metabolismo , Óxido de Zinc/química
3.
Respir Res ; 13: 8, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22296755

RESUMEN

BACKGROUND: Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated. METHODS: SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4+ T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array. RESULTS: SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines. CONCLUSION: These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Asma/metabolismo , Inflamación/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Alérgenos/inmunología , Alérgenos/metabolismo , Células Epiteliales Alveolares/inmunología , Animales , Asma/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Técnicas de Cocultivo , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Humanos , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Phleum/inmunología , Phleum/metabolismo , Polen/inmunología , Polen/metabolismo , Proteína D Asociada a Surfactante Pulmonar/inmunología , Ratas
4.
Langmuir ; 22(12): 5273-81, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16732652

RESUMEN

In addition to particle size and surface chemistry, the shape of particles plays an important role in their wetting and displacement by the surfactant film in the lung. The role of particle shape was the subject of our investigations using a model system consisting of a modified Langmuir-Wilhelmy surface balance. We measured the influence of sharp edges (lines) and other highly curved surfaces, including sharp corners or spikes, of different particles on the spreading of a dipalmitoylphosphatidyl (DPPC) film. The edges of cylindrical sapphire plates (circular curved edges, 1.65 mm radius) were wetted at a surface tension of 10.7 mJ/m2 (standard error (SE) = 0.45, n = 20) compared with that of 13.8 mJ/m2 (SE = 0.20, n = 20) for cubic sapphire plates (straight linear edges, edge length 3 mm) (p < 0.05). The top surfaces of the sapphire plates (cubic and cylindrical) were wetted at 8.4 mJ/m2 (SE = 0.54, n = 20) and 9.1 mJ/m2 (SE = 0.50, n = 20), respectively, but the difference was not significant (p > 0.05). The surfaces of the plates showed significantly higher resistance to spreading compared to that of the edges, as substantially lower surface tensions were required to initiate wetting (p < 0.05). Similar results were found for talc particles, were the edges of macro- and microcrystalline particles were wetted at 7.2 mJ/m2 (SE = 0.52, n = 20) and 8.2 mJ/m2 (SE = 0.30, n = 20) (p > 0.05), respectively, whereas the surfaces were wetted at 3.8 mJ/m2 (SE = 0.89, n = 20) and 5.8 mJ/m2 (SE = 0.52, n = 20) (p < 0.05), respectively. Further experiments with pollen of malvaceae and maize (spiky and fine knobbly surfaces) were wetted at 10.0 mJ/m2 (SE = 0.52, n = 10) and 22.75 mJ/m2 (SE = 0.81, n = 10), respectively (p < 0.05). These results show that resistance to spreading of a DPPC film on various surfaces is dependent on the extent these surfaces are curved. This is seen with cubic sapphire plates which have at their corners a radius of curvature of about 0.75 microm, spiky malvaceae pollen with an even smaller radius on top of their spikes, or talc with various highly curved surfaces. These highly curved surfaces resisted wetting by the DPPC film to a higher degree than more moderately curved surfaces such as those of cylindrical sapphire plates, maize pollens, or polystyrene spheres, which have a surface free energy similar to that of talc but a smooth surface. The macroscopic plane surfaces of the particles demonstrated the greatest resistance to spreading. This was explained by the extremely fine grooves in the nanometer range, as revealed by electron microscopy. In summary, to understand the effects of airborne particles retained on the surfaces of the respiratory tract, and ultimately their pathological potential, not only the particle size and surface chemistry but also the particle shape should be taken in consideration.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Membranas Artificiales , Tensoactivos/química , Óxido de Aluminio/química , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA