Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochimie ; 203: 106-117, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35041857

RESUMEN

The specific activities of gastric and pancreatic lipases were measured using triacylglycerols (TAG) from rapeseed oil, purified 1,3-sn-DAG and 1,2(2,3)-sn-DAG produced from this oil, as well as a rapeseed oil enriched with 40% w/w DAG (DAGOIL). Gastric lipase was more active on 1,3-sn-DAG than on 1,2(2,3)-sn-DAG and TAG, whereas pancreatic lipase displayed a reverse selectivity with a higher activity on TAG than on DAG taken as initial substrates. However, in both cases, the highest activities were displayed on DAGOIL. These findings show that DAG mixed with TAG, such as in the course of digestion, is a better substrate for lipases than TAG. The same rapeseed oil acylglycerols were used to investigate intestinal fat absorption in rats with mesenteric lymph duct cannulation. The levels of TAG synthesized in the intestine and total fatty acid concentration in lymph were not different when the rats were fed identical amounts of rapeseed oil TAG, 1,2(2,3)-sn-DAG, 1,3-sn-DAG or DAGOIL. Since the lipolysis of 1,3-sn-DAG by digestive lipases leads to glycerol and not 2-sn-monoacylglycerol (2-sn-MAG) like TAG lipolysis, these results suggest that the re-synthesis of TAG in the enterocytes can entirely occur through the "glycerol-3-phosphate (G3P)" pathway, with the same efficiency as the 2-sn-MAG pathway predominantly involved in the intestinal fat absorption. These findings shed new light on the role played by DAG as intermediate lipolysis products. Depending on their structure, 1,2(2,3)-sn-DAG versus 1,3-sn-DAG, DAG may control the pathway (2-sn-MAG or G3P) by which TAG are re-synthesized in the enterocytes.


Asunto(s)
Diglicéridos , Enterocitos , Ratas , Animales , Diglicéridos/metabolismo , Enterocitos/metabolismo , Lipasa/metabolismo , Aceite de Brassica napus/metabolismo , Glicerol/metabolismo , Triglicéridos/metabolismo , Digestión , Redes y Vías Metabólicas
2.
Nutr Metab (Lond) ; 15: 22, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568317

RESUMEN

BACKGROUND: Better choices of dietary lipid sources and substitution of refined by fortified oils could reduce the intake of saturated fatty acids (FA) and increase the intake of omega 3 FA concomitantly to healthy bioactive compounds. METHODS: The development of obesity and metabolic disturbances was explored in rats fed during 11 weeks with a high fat diet (HFD) in which the amount of saturated and polyunsaturated FA was respectively reduced and increased, using rapeseed oil as lipid source. This oil was used in a refined form (R) or fortified (10 fold increase in concentration) with endogenous micronutrients (coenzyme Q10 + tocopherol only (RF) only and also with canolol (RFC)). The effect of substituting palm by rapeseed oil was analysed using a student t test, oil fortification was analysed using ANOVA statistical test. RESULTS: Despite a similar weight gain, diets R, RF and RFC improved glucose tolerance (+ 10%) of the rats compared to a standard HFD with palm and sunflower oils as lipid source. Plasma glucose was lowered in RF and RFC groups (- 15 and 23% respectively), although triacylglycerol level was only reduced in group RFC (- 33%) compared to R. The fortification with canolol promoted the activation of Akt and AMP-activated protein kinase (AMPK) in skeletal muscle and subcutaneous adipose tissue respectively. Canolol supplementation also led to reduce p38 MAPK activation in skeletal muscle. CONCLUSIONS: This study suggests that the presence of endogenous micronutrients in rapeseed oil promotes cellular adaptations to reverse glucose intolerance and improve the metabolism of insulin sensitive tissues.

3.
Nutr Metab (Lond) ; 15: 15, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29456586

RESUMEN

BACKGROUND: Obesity progressively leads to cardiac failure. Omega-3 polyunsaturated fatty acids (PUFA) have been shown to have cardio-protective effects in numerous pathological situations. It is not known whether rapeseed oil, which contains α-linolenic acid (ALA), has a similar protective effect. Omega-3 PUFAs are sensitive to attack by reactive oxygen species (ROS), and lipid peroxidation products could damage cardiac cells. We thus tested whether dietary refined rapeseed oil (RSO) associated with or without different antioxidants (vitamin E, coenzyme Q10 and canolol) is cardio-protective in a situation of abdominal obesity. METHODS: Sixty male Wistar rats were subdivided into 5 groups. Each group was fed a specific diet for 11 weeks: a low-fat diet (3% of lipids, C diet) with compositionally-balanced PUFAs; a high-fat diet rich in palm oil (30% of lipids, PS diet); the PS diet in which 40% of lipids were replaced by RSO (R diet); the R diet supplemented with coenzyme Q10 (CoQ10) and vitamin E (RTC diet); and the RTC diet supplemented with canolol (RTCC diet). At the end of the diet period, the rats were sacrificed and the heart was collected and immediately frozen. Fatty acid composition of cardiac phospholipids was then determined. Several features of cardiac function (fibrosis, inflammation, oxidative stress, apoptosis, metabolism, mitochondrial biogenesis) were also estimated. RESULTS: Abdominal obesity reduced cardiac oxidative stress and apoptosis rate by increasing the proportion of arachidonic acid (AA) in membrane phospholipids. Dietary RSO had the same effect, though it normalized the proportion of AA. Adding vitamin E and CoQ10 in the RSO-rich high fat diet had a deleterious effect, increasing fibrosis by increasing angiotensin-2 receptor-1b (Ag2R-1b) mRNA expression. Overexpression of these receptors triggers coronary vasoconstriction, which probably induced ischemia. Canolol supplementation counteracted this deleterious effect by reducing coronary vasoconstriction. CONCLUSION: Canolol was found to counteract the fibrotic effects of vitamin E + CoQ10 on cardiac fibrosis in the context of a high-fat diet enriched with RSO. This effect occurred through a restoration of cardiac Ag2R-1b mRNA expression and decreased ischemia.

4.
J Nutr Biochem ; 43: 116-124, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28284063

RESUMEN

Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Proteínas Portadoras/metabolismo , Glycine max/química , Aceite de Linaza/farmacología , Glicoproteínas de Membrana/metabolismo , Aceite de Palma/farmacología , Paniculitis/etiología , Animales , Dieta Alta en Grasa , Suplementos Dietéticos , Ácidos Grasos/análisis , Receptores de Lipopolisacáridos/metabolismo , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL
5.
Mol Nutr Food Res ; 60(3): 609-20, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26592505

RESUMEN

SCOPE: Enhanced adiposity and metabolic inflammation are major features of obesity that could be impacted by dietary emulsifiers. We investigated in high-fat fed mice the effects of using a new polar lipid (PL) emulsifier from milk (MPL) instead of soybean lecithin (soybean PL [SPL]) on adipose tissue and intestinal mucosa function. METHODS AND RESULTS: Four groups of C57BL6 mice received for 8 wks a low-fat (LF) diet or a high-fat diet devoid of PLs or an high-fat diet including MPL (high-fat-MPL) or SPL (high-fat-SPL). Compared with high-fat diet, high-fat-SPL diet increased white adipose tissue (WAT) mass (p < 0.05), with larger adipocytes (p < 0.05) and increased expression of tumor necrosis factor alpha, monochemoattractant protein-1, LPS-binding protein, and leptin (p < 0.05). This was not observed with high-fat-MPL diet despite similar dietary intakes and increased expression of fatty acid transport protein 4 and microsomal TG transfer protein, involved in lipid absorption, in upper intestine (p < 0.05). High-fat-MPL mice had a lower expression in WAT of cluster of differentiation 68, marker of macrophage infiltration, versus high-fat and high-fat-SPL mice (p < 0.05), and more goblet cells in the colon (p < 0.05). CONCLUSIONS: Unlike SPL, MPL in the high-fat diet did not induce WAT hypertrophy and inflammation but increased colonic goblet cells. This supports further clinical exploration of different sources of dietary emulsifiers in the frame of obesity outbreak.


Asunto(s)
Colon/efectos de los fármacos , Emulsionantes/farmacología , Glycine max/química , Células Caliciformes/efectos de los fármacos , Leche/química , Tejido Adiposo Blanco/efectos de los fármacos , Adiposidad/efectos de los fármacos , Animales , Células CACO-2/efectos de los fármacos , Colon/citología , Dieta con Restricción de Grasas , Dieta Alta en Grasa/efectos adversos , Humanos , Lecitinas/química , Lecitinas/farmacología , Lípidos/análisis , Lípidos/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Paniculitis/inducido químicamente , Paniculitis/metabolismo
6.
J Nutr ; 145(8): 1770-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26136586

RESUMEN

BACKGROUND: Polar lipid (PL) emulsifiers such as milk PLs (MPLs) may affect digestion and subsequent lipid metabolism, but focused studies on postprandial lipemia are lacking. OBJECTIVE: We evaluated the impact of MPLs on postprandial lipemia in mice and on lipid digestion in vitro. METHODS: Female Swiss mice were gavaged with 150 µL of an oil-in-water emulsion stabilized with 5.7 mg of either MPLs or soybean PLs (SPLs) and killed after 1, 2, or 4 h. Plasma lipids were quantified and in the small intestine, gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction. Emulsions were lipolyzed in vitro using a static human digestion model; triglyceride (TG) disappearance was followed by thin-layer chromatography. RESULTS: In mice, after 1 h, plasma TGs tended to be higher in the MPL group than in the SPL group (141 µg/mL vs. 90 µg/mL; P = 0.07) and nonesterified fatty acids (NEFAs) were significantly higher (64 µg/mL vs. 44 µg/mL; P < 0.05). The opposite was observed after 4 h with lower TGs (21 µg/mL vs. 35 µg/mL; P < 0.01) and NEFAs (20 µg/mL vs. 32 µg/mL; P < 0.01) in the MPL group compared with the SPL group. This was associated at 4 h with a lower gene expression of apolipoprotein B (Apob) and Secretion Associated, Ras related GTPase 1 gene homolog B (Sar1b), in the duodenum of MPL mice compared with SPL mice (P < 0.05). In vitro, during the intestinal phase, TGs were hydrolyzed more in the MPL emulsion than in the SPL emulsion (decremental AUCs were 1750%/min vs. 180%/min; P < 0.01). MPLs enhance lipid intestinal hydrolysis and promote more rapid intestinal lipid absorption and sharper kinetics of lipemia. CONCLUSIONS: Postprandial lipemia in mice can be modulated by emulsifying with MPLs compared with SPLs, partly through differences in chylomicron assembly, and TG hydrolysis rate as observed in vitro. MPLs may thereby contribute to the long-term regulation of lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/farmacología , Lipólisis/efectos de los fármacos , Leche/química , Animales , Emulsionantes , Femenino , Regulación de la Expresión Génica , Intestino Delgado/metabolismo , Lecitinas , Lípidos/química , Ratones , Periodo Posprandial
7.
Br J Nutr ; 113(12): 1862-75, 2015 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-25990651

RESUMEN

We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Inositol/administración & dosificación , Inositol/metabolismo , Adipoquinas/sangre , Tejido Adiposo Blanco/enzimología , Tejido Adiposo Blanco/metabolismo , Animales , Suplementos Dietéticos , Ácido Graso Sintasas/metabolismo , Hiperglucemia/metabolismo , Inositol/análisis , Inositol/deficiencia , Inositol/orina , Resistencia a la Insulina , Riñón/química , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/química , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control
8.
PLoS One ; 8(5): e63997, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23734181

RESUMEN

The intake of ω-3 polyunsaturated fatty acids (PUFAs), which are abundant in marine fish meat and oil, has been shown to exert many beneficial effects. The mechanisms behind those effects are numerous, including interference with the arachidonic acid cascade that produces pro-inflammatory eicosanoids, formation of novel bioactive lipid mediators, and change in the pattern of secreted adipocytokines. In our study, we show that eicosapentaenoic acid (EPA) increases secreted adiponectin from 3T3-L1 adipocytes and in plasma of mice as early as 4 days after initiation of an EPA-rich diet. Using 3T3-L1 adipocytes, we report for the first time that 15-deoxy-δ(12,14)-PGJ3 (15d-PGJ3), a product of EPA, also increases the secretion of adiponectin. We demonstrate that the increased adiponectin secretion induced by 15d-PGJ3 is partially peroxisome proliferator-activated receptor-gamma (PPAR-γ)-mediated. Finally, we show that 3T3-L1 adipocytes can synthesize 15d-PGJ3 from EPA. 15d-PGJ3 was also detected in adipose tissue from EPA-fed mice. Thus, these studies provide a novel mechanism(s) for the therapeutic benefits of ω-3 polyunsaturated fatty acids dietary supplementation.


Asunto(s)
Adipocitos/efectos de los fármacos , Adiponectina/metabolismo , PPAR gamma/metabolismo , Prostaglandina D2/análogos & derivados , Células 3T3-L1 , Adipocitos/metabolismo , Adiponectina/sangre , Adiponectina/genética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Anilidas/farmacología , Animales , Grasas de la Dieta/administración & dosificación , Ácido Eicosapentaenoico/administración & dosificación , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacología , Epidídimo/efectos de los fármacos , Epidídimo/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Masculino , Ratones , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , Prostaglandina D2/metabolismo , Prostaglandina D2/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
9.
Nutr Metab (Lond) ; 10(1): 23, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23413782

RESUMEN

BACKGROUND: Dietary intake of n-3 polyunsaturated fatty acids (PUFA) is primarily recognized to protect against cardiovascular diseases, cognitive dysfunctions and the onset of obesity and associated metabolic disorders. However, some of their properties such as bioavailability can depend on their chemical carriers. The objective of our study was to test the hypothesis that the nature of n-3 PUFA carrier results in different metabolic effects related to adiposity, oxidative stress and inflammation. METHODS: 4 groups of C57BL/6 mice were fed for 8 weeks low fat (LF) diet or high-fat (HF, 20%) diets. Two groups of high-fat diets were supplemented with long-chain n-3 PUFA either incorporated in the form of phospholipids (HF-ω3PL) or triacylglycerols (HF-ω3TG). RESULTS: Both HF-ω3PL and HF-ω3TG diets reduced the plasma concentrations of (i) inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1) and interleukin 6 (IL-6), (ii) leptin and (iii) 4-hydroxy-2-nonenal (4-HNE), a marker of n-6 PUFA-derived oxidative stress compared with the control HF diet. Moreover, in both HF-ω3PL and HF-ω3TG groups, MCP-1 and IL-6 gene expressions were decreased in epididymal adipose tissue and the mRNA level of gastrointestinal glutathione peroxidase GPx2, an antioxidant enzyme, was decreased in the jejunum compared with the control HF diet. The type of n-3 PUFA carrier affected other outcomes. The phospholipid form of n-3 PUFA increased the level of tocopherols in epididymal adipose tissue compared with HF-ω3TG and resulted in smaller adipocytes than the two others HF groups. Adipocytes in the HF-ω3PL and LF groups were similar in size distribution. CONCLUSION: Supplementation of mice diet with long-chain n-3 PUFA during long-term consumption of high-fat diets had the same lowering effects on inflammation regardless of triacyglycerol or phospholipid carrier, whereas the location of these fatty acids on a PL carrier had a major effect on decreasing the size of adipocytes that was not observed with the triacyglycerol carrier. Altogether, these results would support the development functional foods containing LC n-3 PUFA in the form of PL in order to prevent some deleterious outcomes associated with the development of obesity.

10.
Am J Physiol Endocrinol Metab ; 302(3): E374-86, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22094473

RESUMEN

Low-grade inflammation observed in obesity is a risk factor for cardiovascular disease. Recent studies revealed that this would be linked to gut-derived endotoxemia during fat digestion in high-fat diets, but nothing is known about the effect of lipid composition. The study was designed to test the impact of oil composition of high-fat diets on endotoxin metabolism and inflammation in mice. C57/Bl6 mice were fed for 8 wk with chow or isocaloric isolipidic diets enriched with oils differing in fatty acid composition: milk fat, palm oil, rapeseed oil, or sunflower oil. In vitro, adipocytes (3T3-L1) were stimulated or not with lipopolysaccharide (LPS; endotoxin) and incubated with different fatty acids. In mice, the palm group presented the highest level of IL-6 in plasma (P < 0.01) together with the highest expression in adipose tissue of IL-1ß and of LPS-sensing TLR4 and CD14 (P < 0.05). The higher inflammation in the palm group was correlated with a greater ratio of LPS-binding protein (LBP)/sCD14 in plasma (P < 0.05). The rapeseed group resulted in higher sCD14 than the palm group, which was associated with lower inflammation in both plasma and adipose tissue despite higher plasma endotoxemia. Taken together, our results reveal that the palm oil-based diet resulted in the most active transport of LPS toward tissues via high LBP and low sCD14 and the greatest inflammatory outcomes. In contrast, a rapeseed oil-based diet seemed to result in an endotoxin metabolism driven toward less inflammatory pathways. This shows that dietary fat composition can contribute to modulate the onset of low-grade inflammation through the quality of endotoxin receptors.


Asunto(s)
Tejido Adiposo Blanco/inmunología , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/inmunología , Receptores Inmunológicos/metabolismo , Células 3T3-L1 , Proteínas de Fase Aguda , Tejido Adiposo Blanco/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteínas Portadoras/sangre , Citocinas/sangre , Ácidos Grasos Monoinsaturados , Ácidos Grasos no Esterificados/efectos adversos , Ácidos Grasos no Esterificados/sangre , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/aislamiento & purificación , Intestinos/inmunología , Intestinos/microbiología , Intestinos/patología , Receptores de Lipopolisacáridos/sangre , Receptores de Lipopolisacáridos/metabolismo , Masculino , Glicoproteínas de Membrana/sangre , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/microbiología , Ratones , Ratones Endogámicos C57BL , Aceite de Palma , Aceites de Plantas/efectos adversos , Distribución Aleatoria , Aceite de Brassica napus , Aceite de Girasol , Receptor Toll-Like 4/metabolismo
11.
Br J Nutr ; 104(9): 1304-12, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20487585

RESUMEN

Consumption of DHA has numerous beneficial effects, but little is known about these effects during the first few days of the DHA dietary intake. The main objectives of the present study were to determine the time course of DHA incorporation into phospholipids in different mouse tissues and the effects of DHA supplementation on adiponectin and leptin secretion. Mice were fed either a control diet or a DHA-rich diet, and some were killed on days 0, 4, 8, 16 and 32. Some mice were fed the DHA-rich diet for 16 d, and were then maintained on the control diet for sixteen more days (washout period). DHA supplementation increased plasma adiponectin secretion by 2·4-fold as early as 4 d after the initiation of the DHA-rich diet feeding. The adiponectin concentration remained 1·6-fold higher after the 16 d washout period. Plasma leptin levels were significantly lower after 4 d of feeding with DHA. These effects were associated with a significant increase in DHA incorporation in phosphatidylethanolamine and phosphatidylcholine of all analysed tissues (liver, heart and white adipose tissues). DHA mainly got incorporated at the expense of n-6 arachidonic acid. The present data show that DHA rapidly improved the profile of secreted adipokines, and that these protective effects were long lasting.


Asunto(s)
Adiponectina/metabolismo , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/farmacocinética , Leptina/metabolismo , Hígado/metabolismo , Fosfatidilcolinas/metabolismo , Adiponectina/sangre , Tejido Adiposo Blanco/metabolismo , Animales , Ácido Araquidónico/metabolismo , Citocinas/metabolismo , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos ICR , Miocardio/metabolismo , Fosfatidiletanolaminas/metabolismo , Factores de Tiempo , Distribución Tisular
12.
J Lipid Res ; 50(2): 243-55, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18809971

RESUMEN

Bis(monoacylglycero)phosphate (BMP) is a unique phospholipid (PL) preferentially found in late endosomal membranes, where it forms specialized lipid domains. Recently, using cultured macrophages treated with anti-BMP antibody, we showed that BMP-rich domains are involved in cholesterol homeostasis. We had previously stressed the high propensity of BMP to accumulate docosahexaenoic acid (DHA), compared with other PUFAs. Because phosphatidylglycerol (PG) was reported as a precursor for BMP synthesis in RAW macrophages, we examined the effects of PG supplementation on both FA composition and amount of BMP in this cell line. Supplementation with dioleoyl-PG (18:1/18:1-PG) induced BMP accumulation, together with an increase of oleate proportion. Supplementation with high concentrations of didocosahexaenoyl-PG (22:6/22:6-PG) led to a marked enrichment of DHA in BMP, resulting in the formation of diDHA molecular species. However, the amount of BMP was selectively decreased. Similar effects were observed after supplementation with high concentrations of nonesterified DHA. Addition of vitamin E prevented the decrease of BMP and further increased its DHA content. Supplementation with 22:6/22:6-PG promoted BMP accumulation with an enhanced proportion of 22:6/22:6-BMP. DHA-rich BMP was significantly degraded after cell exposure to oxidant conditions, in contrast to oleic acid-rich BMP, which was not affected. Using a cell-free system, we showed that 22:6/22:6-BMP is highly oxidizable and partially protects cholesterol oxidation, compared with 18:1/18:1-BMP. Our data suggest that high DHA content in BMP led to specific degradation of this PL, possibly through the diDHA molecular species, which is very prone to peroxidation and, as such, a potential antioxidant in its immediate vicinity.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Lisofosfolípidos/metabolismo , Macrófagos/metabolismo , Monoglicéridos/metabolismo , Animales , Células Cultivadas , Colesterol/metabolismo , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Liposomas/metabolismo , Ratones , Oxidación-Reducción , Fosfatidilgliceroles/metabolismo
13.
Obesity (Silver Spring) ; 15(6): 1409-18, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17557978

RESUMEN

OBJECTIVE: We assessed the relationship between a high-fat (HF) diet and central apnea during rapid eye movement and non-rapid eye movement sleep stages by recording ventilatory parameters in 28 non-obese rats in which insulin resistance had been induced by an HF diet. We also studied whether metformin (an anti-hyperglycemic drug frequently used to treat insulin resistance) could reverse sleep apnea or prevent its occurrence in this experimental paradigm. RESEARCH METHODS AND PROCEDURES: Rats were fed with a standard diet (10 rats), an HF diet (8 rats), or an HF diet concomitantly with metformin treatment (10 rats). Each animal was instrumented for electroencephalographic and electromyographic recording. After 3 weeks, ventilatory parameters during sleep were recorded with a body plethysmograph. All rats were treated with metformin for 1 week, after which time the ventilatory measurements were measured again. RESULTS: Our results showed that the three groups of animals did not differ in terms of body growth over the entire experimental period. The HF diet did not modify sleep structure or minute ventilation in the different sleep stages. A great increase (+266 +/- 48%) in central apnea frequency was observed in insulin-resistant rats. This was explained by an increase in both post-sigh (+195 +/- 35%) and spontaneous apnea (+437 +/- 65%) in the different sleep stages. These increases were suppressed by metformin treatment. DISCUSSION: Insulin resistance induced by the HF diet could be the promoter of sleep apnea in non-obese rats. Metformin is an efficient curative and preventive treatment for sleep apnea, suggesting that insulin resistance modifies the ventilatory drive independently of obesity.


Asunto(s)
Dieta Aterogénica , Grasas de la Dieta/efectos adversos , Metformina/uso terapéutico , Síndromes de la Apnea del Sueño/tratamiento farmacológico , Síndromes de la Apnea del Sueño/etiología , Síndromes de la Apnea del Sueño/prevención & control , Animales , Peso Corporal/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Hipoglucemiantes/uso terapéutico , Masculino , Ratas , Ratas Sprague-Dawley , Sueño/efectos de los fármacos
14.
Planta Med ; 71(12): 1170-2, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16395657

RESUMEN

This study explores the ability of cirsimarin, a plant flavonoid, to trigger lipid mobilization. Cirsimarin was extracted from Microtea debilis Swartz (Phytolaccaceae) and purified by preparative HPLC. Its lipolytic activity was assessed on isolated adipocytes from rats and compared to that of caffeine, a well known lipolytic agent. The results show an EC (50) = 0.025 +/- 0.01 mM for cirsimarin (n = 4) and of 0.49 +/- 0.08 mM for caffeine (n = 4). Furthermore, we show that cirsimarin inhibits phosphodiesterase, the enzyme that modulates cyclic nucleotide signalling. In conclusion, our results demonstrate that cirsimarin exerts strong lipolytic properties being 20 times more potent than caffeine to stimulate lipolysis, at least in part through cyclic nucleotide preservation.


Asunto(s)
Adipocitos/efectos de los fármacos , Flavonas/aislamiento & purificación , Flavonas/farmacología , Glicósidos/aislamiento & purificación , Glicósidos/farmacología , Lipólisis/efectos de los fármacos , Phytolaccaceae/química , 3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Adipocitos/metabolismo , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Flavonas/química , Glicósidos/química , Estructura Molecular , Componentes Aéreos de las Plantas/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA